Skip to main content

Control of the Exocytotic Mechanism in Rat Mast Cells

  • Chapter
Histamine and Histamine Antagonists

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 97))

Abstract

The granular appearance of the mast cell (and the closely related blood basophil) tells us immediately that this is a cell highly specialised for secretion and for this reason it has been widely used as one of the prime model systems in the investigation of the secretory process. It is, however, only a few years since the argument about whether the degranulation reaction is conventionally exocytotic (i.e. non-lytic, involving selective fusion of granule and plasma membrane) was settled with the demonstration that histamine is released from stimulated cells while K+ and lactate dehydrogenase are retained (Johnson and Moran 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan D, Michell RH (1979) The possible role of lipids in control of membrane fusion during secretion. In: Hopkins CR, Duncan CJ (eds) Secretory mechanisms. Cambridge University Press, Cambridge, pp 323–336

    Google Scholar 

  • Aridor M, Sagi-Eisenberg R (1990) Modulation of phosphatidic acid formation and histamine secretion from mast cells by GTP-binding proteins. J Cell Biol 00:00–00

    Google Scholar 

  • Aridor, M. Traub, L. Sagi-Eisenberg, R. (1990) Exocytosis in mast cells by basic secretagogues: Evidence for direct activation of GTP-binding proteins. J Cell Biol III: (in press)

    Google Scholar 

  • Austen KF, Bloch KJ, Barker AR, Arnason BG (1965) Immunological histamine release from rat mast cells in vitro. Proc Soc Exp Biol Med 120:542–546

    CAS  Google Scholar 

  • Baker PF, Knight DE, Umbach JA (1985) Calcium clamp of the intracellular environment. Cell Calcium 6:5–14

    PubMed  CAS  Google Scholar 

  • Banks BEC, Vernon CA (1970) Reassessment of the role of ATP in vivo. J Theor Biol 29:301–326

    PubMed  CAS  Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1986) Two roles for guanine nucleotides in stimulus secretion sequence of neutrophils. Nature 319:504–507

    PubMed  CAS  Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1987) Differential control of azurophilic and specific granule exocytosis in Sendai virus permeabilised rabbit neutrophils. J Physiol (Lond) 383:115–124

    PubMed  CAS  Google Scholar 

  • Bar-Sagi D, Gomperts BD (1988) Stimulation of exocytotic degranulation by microinjection of the ras oncogenic protein into rat mast cells. Oncogene 3:463–469

    PubMed  CAS  Google Scholar 

  • Beaven MA, Guthrie DF, Moore JP, Smith GA, Hesketh TR, Metcalfe JC (1987) Synergistic signals in the mechanism of antigen-induced exocytosis in 2H3 cells: evidence for an unidentified signal required for histamine release. J Cell Biol 105:1129–1136

    PubMed  CAS  Google Scholar 

  • Becker EL, Henson PM (1973) In vitro studies of immunologically induced secretion of mediators from cells and related phenomena. Adv Immunol 17:93–145

    PubMed  CAS  Google Scholar 

  • Bennett JP, Cockcroft S, Gomperts BD (1980) Ionomycin stimulates mast cell histamine secretion by forming a lipid soluble calcium complex. Nature 282:851–853

    Google Scholar 

  • Bennett JP, Cockcroft S, Gomperts BD (1981) Rat mast cells permeabilised with ATP secrete histamine in response to calcium ions buffered in the micromolar range. J Physiol (Lond) 317:335–345

    PubMed  CAS  Google Scholar 

  • Bittner MA, Holz RW, Neubig RR (1986) Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. J Biol Chem 261:10182–10188

    PubMed  CAS  Google Scholar 

  • Bloom GD, Haegermark O (1965a) Studies on morphological changes and histamine release induced by compound 48/80 in rat peritoneal mast cells. Exp Cell Res 40:637–654

    PubMed  CAS  Google Scholar 

  • Bloom GD, Haegermark O (1965b) Studies on morphological changes and histamine release induced by compound 48/80 in rat peritoneal mast cells. Acta Physiol Scand 78:410–419

    Google Scholar 

  • Bone EA, Alling DW, Grollman EF (1986) Norepinephrine and thyroid stimulating hormone induce inositol phosphate accumulation in FRT1-5 cells. Endocrinology 119:2193–2200

    PubMed  CAS  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sei USA 84:1945–1949

    CAS  Google Scholar 

  • Buckingham L, Duncan JL (1983) Approximate dimensions of membrane lesions produced by streptolysin S and streptolysin O. Biochim Biophys Acta 729:115–122

    PubMed  CAS  Google Scholar 

  • Burch RM, Axelrod J (1987) Dissociation of bradykinin-induced prostaglindin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sei USA 84: 6374–6378

    CAS  Google Scholar 

  • Campbell AK (1983) Intracellular calcium: its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Chandler DE, Heuser JE (1980) Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol 86:666–674

    PubMed  CAS  Google Scholar 

  • Chandler DE, Bennett JP, Gomperts BD (1983) Freeze fracture studies of chemotactic peptide induced exocytosis in neutrophils: evidence for two patterns of secretory granule fusion. J Ultrastruct Res 82:221–232

    PubMed  CAS  Google Scholar 

  • Churcher Y, Allan D, Gomperts BD (1990) Relationship between arachidonate generation and exocytosis in permeabilised mast cells. Biochem J 266:157–163

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1979a) Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling: studies with rat peritoneal mast cells. Biochem J 178:681–687

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1979b) Activation and inhibition of calcium dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol (Lond) 296:229–243

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1979c) ATP induces nucleotide permeability in rat mast cells. Nature 279:541–542

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314:534–536

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1986) Some new questions concerning the role of calcium in exocytosis. In: Baker PF (ed) Calcium and drug action. Springer, Berlin, Heidelberg New York, pp 305–338

    Google Scholar 

  • Cockcroft S, Howell TW, Gomperts BD (1987) Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinsitide phosphodiesterase and exocytosis. J Cell Biol 105:2745–2750

    PubMed  CAS  Google Scholar 

  • Dahlquist R, Diamant B (1974) Interaction of ATP and calcium on the rat mast cell: effect on histamine release. Acta Pharmacol Toxicol (Copenh) 34:368–384

    CAS  Google Scholar 

  • Das S, Rand RP (1986) Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry 25:2882–2889

    PubMed  CAS  Google Scholar 

  • Diamant B, Kruger PG (1967) Histamine release from isolated rat peritoneal mast cells by adenosine-5′-triphosphate. Acte Physiol Scand 71:291–302

    CAS  Google Scholar 

  • Diamant B, Patkar SA (1974) Histamine release from isolated rat mast cells: dual effects of the ionophore A23187. Int Arch Allerg Appl Immunol 49:183–207

    Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RJ (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26:2657–2664

    PubMed  CAS  Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474

    PubMed  CAS  Google Scholar 

  • Douglas WW, Ueda Y (1973) Mast cell secretion (histamine release) induced by 48/80: calcium dependent exocytosis inhibited strongly by cytochalasin only when glycolysis is rate limiting. J Physiol (Lond) 234:97p

    Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453–455

    PubMed  CAS  Google Scholar 

  • Fernandez JM, Lindau M, Eckstein F (1987) Intracellular stimulation of mast cells with guanine nucleotides mimic antigenic stimulation. FEBS Lett 216:89–93

    PubMed  CAS  Google Scholar 

  • Foreman JC, Mongar· JL (1972) The role of the alkaline earth ions in anaphylactic histamine secretion. J Physiol (Lond) 224:753–769

    PubMed  CAS  Google Scholar 

  • Foreman JC, Mongar JL, Gomperts BD (1973) Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature 245:249–251

    PubMed  CAS  Google Scholar 

  • Füssle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Biol Chem 91:83–94

    Google Scholar 

  • Gilligan DM, Satir BH (1982) Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J. Biol Chem 257:13903–13906

    CAS  Google Scholar 

  • Gomperts BD (1983) Involvement of guanine nucleotide-binding proteins in the gating of Ca by receptors. Nature 306:64–66.

    PubMed  CAS  Google Scholar 

  • Gomperts BD (1984) Calcium and cellular activation. In: Chapman D (ed) Biological membranes, vol 5, Academic, New York, pp 284–340

    Google Scholar 

  • Gomperts BD (1986) Calcium shares the limelight in stimulus-secretion coupling. Trends Biochem Sei 11:290–292

    CAS  Google Scholar 

  • Gomperts BD, Fernandez JM (1985) Techniques for membrane permeabilisation. Trends Biochem Sei 10:414–417 .

    Google Scholar 

  • Gomperts BD, Tatham PER (1988) GTP-binding proteins in the control of exocytosis. Cold Spring Harbor Symp Quant Biol 53:983–992

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Bennett JP, Allan D (1981) A synthetic ionophore for Ca2+: studies with model and biological systems. Eur J Biochem 117:559–562

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Baldwin JM, Micklem KJ (1983) Rat mast cells permeabilised with Sendai virus secrete histamine in response to Ca2+ buffered in the micromolar range. Biochem J 210:737–745

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Barrowman MM, Cockcroft S (1986) Dual role for guanine nucleotides in stimulus-secretion coupling: an investigation of mast cells and neutrophils. Fed Proc 45:2156–2161

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Cockcroft S, Howell TW, Nüsse O, Tatham PER (1987) The dual effector system for exocytosis in mast cells: obligatory requirement for both Ca + and GTP. Biosci Rep 7:369–381

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Cockcroft S, Howell TW, Tatham PER (1988) Intracellular Ca, GTP and ATP as effectors and modulators of exocytotic secretion from rat mast cells. In: Thorn NA, Treiman M, Petersen OH (eds) Molecular mechanisms in secretion. Munksgaard, Copenhagen, pp 248–261

    Google Scholar 

  • Grosman N, Diamant B (1975) Effect of adenosine-5′-triphosphate (ATP) on rat mast cells: influence on anaphylactic and compound 48/80-induced histamine release. Agents Actions 5:108–114

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakman B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391:85–100

    CAS  Google Scholar 

  • Haslam RJ, Davidson MML (1984a) Guanine nucleotides decrease the free [Ca ] required for secretion of serotonin from permeabilized blood platelets: evidence of a role for a GTP-binding-protein in platelet activation. FEBS Lett 174:90–95.

    PubMed  CAS  Google Scholar 

  • Haslam RJ, Davidson MML (1984b) Potentiation by thrombin of the secretion of serotonin from permeabilised platelets equilibrated with Ca2+ buffers. Biochem J 222:351–361 . r

    PubMed  CAS  Google Scholar 

  • Higashijima T, Uzu S. Nakajima T, Ross EM (1988) Mastparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-regulatory proteins (G- proteins). J Biol Chem 263:6491–6494

    PubMed  CAS  Google Scholar 

  • Holz RW, Bittner MA, Peppers SC, Senter RA, Eberhard DA (1989) MgATP- Independent and MgATP-dependent exocytosis: evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis. J Biol Chem 264:5412–5419

    PubMed  CAS  Google Scholar 

  • Howell TW, Gomperts BD (1987) Rat mast cells permeabilised with streptolysin-O secrete histamine in response to Ca2+ at concentrations buffered in the micromolar range. Biochem Biophys Acta 927:177–183

    PubMed  CAS  Google Scholar 

  • Howell TW, Cockcroft S, Gomperts BD (1987) Essential synergy between Ca and guanine nucleotides in exocytotic secretion from permeabilised mast cells. J. Cell Biol 105:191–197

    CAS  Google Scholar 

  • Howell TW, Kramer I, Gomperts BD (1989) Protein phosphorylation and the dependence on Ca2+ for GTP-y-S stimulted exocytosis from permeabilised mast cells. Cell Signalling 1:157–163

    PubMed  CAS  Google Scholar 

  • Impraim CC, Foster KA, Micklem KJ, Pasternak CA (1980) Nature of virally mediated changes in membrane permeability to small molecules. Biochem J 186:847–860

    PubMed  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T (1968) Immune mechanisms of reversed type reagimc hypersensitivity. J Immunol 103:588–595

    Google Scholar 

  • Johansen T (1987) Energy metabolism in rat mast cells in relation to histamine secretion. Pharmacol Toxicol [Suppl 2] 61:1–20

    PubMed  Google Scholar 

  • Johnson AR, Moran NC (1969) Selective release of histamine from rat mast cells by compound 48/80 and antigen. Am J Physiol 216:632–640

    Google Scholar 

  • Keller R (1973) Concanavalin A, a model ‘antigen’ for the in vitro detection of cellbound reaginic antibody in the rat. Clin Exp Immunol 13:139–147

    PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol 68:107–140

    PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1985) Guanine nucleotides and Ca-dependent exocytosis. FEBS Lett 189:345–349

    PubMed  CAS  Google Scholar 

  • Knight DE, Koh E (1984) Ca2+ and cyclic nucleotide dependence of amylase release from isolated rat pancreatic acinar cells rendered permeable by intense electric fields. Cell Calcium 5:401–418

    PubMed  CAS  Google Scholar 

  • Knight DE, Scrutton MC (1986a) Gaining access to the cytosol: the technique and some applications of electropermeabilisation. Biochem J 234:497–506

    PubMed  CAS  Google Scholar 

  • Knight DE, Scrutton MC (1986b) Effects of guanine nucleotides on the properties of 5-hydroxytryptamine secretion from electro-permeabilised human platelets. Eur J Biochem 160:183–190

    PubMed  CAS  Google Scholar 

  • Knight DE, Niggli V, Scrutton MC (1984) Thrombin and activators of protein kinease C modulate secretory response of permeabilised human platelets induced by Ca2+. Eur J Biochem 143:437–446

    PubMed  CAS  Google Scholar 

  • Lagunoff D (1973) Membrane fusion during mast cell secretion. J Cell Biol 57:232–250

    Google Scholar 

  • Lawson D, Fewtrell CMS, Gomperts BD, Raff MC (1975) Anti-immunoglobulininduced histamine secretion by rat peritoneal mast cells studied by immunoferritin electron microscopy. J Exp Med 142:391–402

    PubMed  CAS  Google Scholar 

  • Lawson D, Raff MC, Fewtrell CMS, Gomperts BD, Gilula NB (1976) Molecular events in membrane fusion occurring during mast cell degranulation. In: Johannson SGO, Standberg K, Uvnas B (eds) Molecular and biological aspects of the acute allergic reactions. Plenum, New York, pp 279–291

    Google Scholar 

  • Lefkowitz RJ, Benovic JL, Kobilka B, Caron MG (1986) ß-Adrenergic receptors and rhodopsin: shedding new light on an old subject. Trends Pharmacol Sei 7:444–448

    CAS  Google Scholar 

  • Lew PD, Monod A, Waldwogel FA, Dwewald B, Baggiolini M, Pozzan T (1986) Quantitative analysis of the cytosolic free calcium dependence of exocytosis from three subcellular compartments in intact human neutrophils. J Cell Biol 102: 2197–2204

    PubMed  CAS  Google Scholar 

  • Lichtenstein LM (1974) The immediate allergic response: in vitro separation of antigen activation, decay and histamine release. J Immunol 107:1122–1129

    Google Scholar 

  • Lichtenstein LM, de Bernardo R (1971) IgE-mediated histamine release: in vitro separation into two phases. Int Arch Allerg Appl Immunol 41:56–71

    CAS  Google Scholar 

  • Lindau M, Nüsse O (1987) Pertussis toxin does not affect the time course of exocytosis in mast cells stimulated by intracellular application of GTP-y-S. FEBS Lett 222:317–321

    PubMed  CAS  Google Scholar 

  • Luini A, de Matteis MA (1988) Dual regulation of ACTH secretion by guanine nucleotides in permeabilized AtT-20 cells. Cell Mol Neurobiol 8:129–138

    PubMed  CAS  Google Scholar 

  • Marty A, Neher E (1983) Tight seal whole-cell recording. In: Sakmann B, Neher E (eds) Single channel recording. Plenum, New York, pp 107–121

    Google Scholar 

  • Miller MR, Castellot JJ, Pardee AB (1978) A permeable animal cell preparation for studying macro molecular synthesis, DNA synthesis and the role of deoxy ribonucleotides in S phase initiation. Biochemistry 17:1073–1080

    PubMed  CAS  Google Scholar 

  • Momayezi M, Lumpert CJ, Kerksen H, Gras U, Plattner H, Krinks MH, Klee CB (1986) Exocytosis induction in Paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion. J Cell Biol 105:181–189

    Google Scholar 

  • Nakashima S, Nagata K-I, Uede K, Nozawa Y (1988) Stimulation of arachidonic acid release by guanine nucleotide in saponin-permeabilized neutrophils: evidence for involvement of GTP-binding protein in phospholipase A2 activation. Arch Biochem Biophys 261:375–383

    PubMed  CAS  Google Scholar 

  • Neher E (1987) The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol (Lond) 395:193–214

    Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sei USA 79:6712–6716

    CAS  Google Scholar 

  • Neher E, Penner R (1988) The influence of intracellular calcium concentration on the secretory response of mast cells. In: Thorn N, Treiman M, Peterson OH (eds) Molecular mechanisms in secretion. Munksgaard, Copenhagen, pp 262–270

    Google Scholar 

  • Ornberg RL, Reese TS (1981) Beginning of exocytosis captured by rapid freezing of Limulus amebocytes. J Cell Biol 90:40–45

    PubMed  CAS  Google Scholar 

  • Penner R, Pusch M, Neher E (1987) Washout phenomena in dialyzed mast cells allow discrimination of different steps in stimulus-secretion coupling. Biosci Rep 7: 313–321

    PubMed  CAS  Google Scholar 

  • Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527–538

    PubMed  CAS  Google Scholar 

  • Schacht J (1976) Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea pig cerebral cortex in vitro. J Neurochem 27:1119–1124

    PubMed  CAS  Google Scholar 

  • Schacht J (1978) Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res 19:1063–1067

    PubMed  CAS  Google Scholar 

  • Smolen JE, Stoehr SJ (1985) Micromolar concentrations of free calcium provoke secretion of lysozyme from human neutrophils permeabilized with saponin. J Immunol 134:1859–1865

    PubMed  CAS  Google Scholar 

  • Stutchfield J, Cockcroft S (1988) Guanine nucleotides stimulate polyphosphoinositide phosphodiesterase and exocytotic secretion from HL-60 cells permeabilised with streptolysin O. Biochem J 250:375–382

    PubMed  CAS  Google Scholar 

  • Sugiyama K (1971) Significance of ATP-splitting activity of rat peritoneal mast cells in the histamine release induced by exogenous ATP. Jpn J Pharmacol 21: 531–539

    PubMed  CAS  Google Scholar 

  • Sundler R, Papahadjopoulos D (1981) Control of membrane fusion by phospholipid head groups: phosphatidate/phosphatidylinositol specificity. Biochem Biophys Acta 649:743–750

    PubMed  CAS  Google Scholar 

  • Tatham PER, Cusack NJ, Gomperts BD (1988) Characterisation of the ATP4-- receptor that mediates permeabilisation of rat mast cells. Eur J Pharmacol 147: 13–21

    PubMed  CAS  Google Scholar 

  • Tatham PER, Gomperts BD (1989) ATP inhibits onset of exocytosis in permeabilised mast cells. Biosci Repts 9:99–109

    CAS  Google Scholar 

  • Ullrich S, Wollheim CB (1988) GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells: lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem 263:8615–8620

    PubMed  CAS  Google Scholar 

  • Uvnäs B (1974) Histamine storage and release. Fed Proc 33:2172–2176

    PubMed  Google Scholar 

  • Vallar L, Biden TJ, Wollheim CB (1987) Guanine nucleotides induce Ca2+ independent secretion from permeabilized RINm5F cells. J Biol Chem 262:5049–5056

    PubMed  CAS  Google Scholar 

  • Van Blitterswijk WJ, Van Der Bend RL, Kramer I, Verhoeven AJ, Hilkmann H, de Widt J (1987) A metabolite of an antineoplastic ether phospholipid may inhibit transmembrane signalling via protein kinase C. Lipids 22:842–846

    PubMed  Google Scholar 

  • Vilmart-Seuwen J, Kerksen H, Sturtzl R, Plattner H (1986) ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with Paramecium cells in vivo and in vitro. J Cell Biol 103:1279–1288

    PubMed  CAS  Google Scholar 

  • Westerhoff HV (1988) Cellular energetics. In: Akkerman JWN (ed) Energetics of secretion responses. CRC, Boca Raton, pp 3–24

    Google Scholar 

  • White JR, Ishizaka T, Ishizaka K, Sha’afi RI (1984) Direct demonstration of increased intracellular concentration of free calcium measured by quin-2 in stimulated rat mast cells. Proc Natl Acad Sei USA 81:3978–3982

    CAS  Google Scholar 

  • Wollheim CB, Ullrich S, Meda P, Vallar L (1987) Regulation of exocytosis in electrically permeabilized insulin-secreting cells: evidence for Ca2+ dependent and independent secretion. Biosci Rep 7:443–454

    PubMed  CAS  Google Scholar 

  • Yaseen MA, Pedley KC, Howell SL (1982) Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge. Biochem J 206: 81–87

    PubMed  CAS  Google Scholar 

  • Zieseniss E, Plattner H (1985) Synchronous exocytosis in Paramecium cells involves very rapid (≤1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol 101:2028–2035

    PubMed  CAS  Google Scholar 

  • Zimmerberg J (1987) Molecular mechanisms of membrane fusion: steps during phospholipid and exocytotic membrane fusion. Biosci Rep 7:251–268

    PubMed  CAS  Google Scholar 

  • Zimmerberg J, Curran M, Cohen FS, Brodwick M (1987) Stimultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sei USA 84:1585–1589

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomperts, B.D. (1991). Control of the Exocytotic Mechanism in Rat Mast Cells. In: Uvnäs, B. (eds) Histamine and Histamine Antagonists. Handbook of Experimental Pharmacology, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75840-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75840-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75842-3

  • Online ISBN: 978-3-642-75840-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics