Skip to main content

Neuropeptide Mechanisms Affecting Temperature Control

  • Conference paper
Behavioral Aspects of Neuroendocrinology

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 10))

Abstract

The internal body temperature of mammals is remarkably constant, being regulated at approximately 37°–39°C in most mammals and, in individuals, varying by less than a degree under remarkably diverse metabolic and environmental influences. This condition of homeothermia is a feature of mammals and birds. It appears to be brought about through the defense of a specific set-point for body temperature. Animals which are unable to defend their body temperature are said to be poikilothermic, and such animals exhibit changes in body temperature related directly to environmental demands. While poikilotherms also appear to regulate around a set-point for body temperature, they lack the physiological mechanisms enjoyed by homeotherms in regulating body temperature. When the body temperature of a homeotherm falls below its set-point, the animal is said to be hypothermic, and appropriate mechanisms are engaged to return the body temperature to normal; a body temperature above the normal set-point temperature is known as hyperthermia, and such animals engage in mechanisms designed to reduce body temperature. The state of fever resembles that of hyperthermia in that body temperature is above normal; however, in contrast to hyperthermia, a febrile animal appears to have an altered set-point for body temperature regulation such that the temperature is defended at a new, elevated level. The febrile condition can be initiated by a number of pathological and experimental situations but is most commonly brought about through the action of pyrogens or bacterial endotoxins. Certain substances, such as the common drugs acetylsalicylic acid (aspirin) and acetaminophen, reduce febrile body temperature but, at the doses effective in lowering fever, are ineffective in altering normal body temperatures; these substances are known as antipyretics.

This work was supported by the Medical Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander SJ, Cooper KE, Veale WL (1989) Sodium salicylate: alternate mechanism of central antipyretic action in the rat. Pflugers Arch 413:451–455

    Article  PubMed  CAS  Google Scholar 

  • Anastasi A, Easparma V, Bucci M (1971) Isolation and structure of bombesin and alytesin, two analogous active peptides form the skin of the European amphibians, Bombina and Alytes. Experientia 27:166–167

    Article  PubMed  CAS  Google Scholar 

  • Babcock AM, Wunder BA (1984) Effects of bombesin on body temperature and oxygen consumption in food-deprived rats. Neuropharmacology 23:1357–1358

    Article  PubMed  CAS  Google Scholar 

  • Babcock AM, Barton C, Hernon F, Perez L (1989) Bombesin produces hypothermia in insulin-treated rats. Neuropharmacology 28:437–440

    Article  PubMed  CAS  Google Scholar 

  • Banet M, Wieland UE (1985) The effect of intraseptally applied vasopressin on thermoregulation in the rat. Brain Res Bull 14:113–116

    Article  PubMed  CAS  Google Scholar 

  • Bansinath M, Das S, Bhargava HN (1987) Spontaneously hypertensive rats exhibit supersensitivity to the hypertensive and hyperthermie effects of thyrotropin releasing hormone. Peptides 8:227–230

    Article  PubMed  CAS  Google Scholar 

  • Bell RC, Lipton JM (1987) Pulsatile release of antipyretic neuropeptide alpha-MSH from septum of rabbit during fever. Am J Physiol 252:R1152–R1157

    PubMed  CAS  Google Scholar 

  • Bernardini GL, Lipton JM, Clark WG (1983) Intracerebroventricular and septal injections of arginine vasopressin are not antipyretic in the rabbit. Peptides 4:195–198

    Article  PubMed  CAS  Google Scholar 

  • Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48:639–654

    Article  PubMed  CAS  Google Scholar 

  • Breese GR, Frye GD, McCown TJ, Mueller RA (1984) Comparison of the CNS effects induced by TRH and bicuculline after microinjection into medial septum, substantia nigra and inferior colliculus: absence of support for a GABA antagonist action for TRH. Pharmacol Biochem Behav 21:145–149

    Article  PubMed  CAS  Google Scholar 

  • Brown MR (1981) Thyrotropin releasing factor: a putative CNS regulator of the autonomic nervous system. Life Sci 28:1789–1795

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Rivier J, Vale W (1977a) Bombesin: potent effects on thermoregulation in the rat. Science 196:998–1000

    Article  CAS  Google Scholar 

  • Brown M, Rivier J, Vale W (1977b) Actions of bombesin, thyrotropin releasing factor, prostaglandin E2 and naloxone on thermoregulation in the rat. Life Sci 20:1681–1688

    Article  CAS  Google Scholar 

  • Brown M, Marki W, Rivier J (1978) Bombesin-like activity: radioimmunologic assessment in biological tissues. Life Sci 23:2721–2728

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Allen R, Villarreal J, Rivier J, Vale W (1980) Is gastrin releasing peptide mammalian bombesin? Life Sci 27:122–128

    Article  Google Scholar 

  • Brown M, Taché Y, Rivier J, Pittman QJ (1981) Peptides and regulation of body temperature. In: Martin JB, Reichlin S, Buck KL (eds) Neurosecretion and brain peptides: implications for brain functions and neurological diseases. New York, Raven Press, pp 609–625

    Google Scholar 

  • Brown M, Allen R, Fisher L (1987) Bombesin alters the sympathetic nervous system response to cold exposure. Brain Res 400:35–39

    Article  PubMed  CAS  Google Scholar 

  • Brownstein M, Palkovits M, Saavedra JM, Bassiri R, Utiger RD (1974) Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 185:267–269

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, van Heerikhuize JJ (1982) Vasopressin and oxytocin in the brain — a synaptic event. Brain Res 252:71–76

    Article  PubMed  CAS  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R (1970) Characterization of ovine hypothalamic hypophysiotropic TSH-releasing factor. Nature 226:321–325

    Article  PubMed  CAS  Google Scholar 

  • Burnard DM, Pittman QJ, Veale WL (1983) Increased motor disturbances in response to arginine vasopressin following hemorrhage or hypertonic saline: evidence for central AVP release in rats. Brain Res 273:59–65

    Article  PubMed  CAS  Google Scholar 

  • Burt DR, Snyder SH (1975) Thyrotropin-releasing hormone (TRH)-apparent receptor binding in rat brain membrane. Brain Res 93:309–328

    Article  PubMed  CAS  Google Scholar 

  • Calisher SB, Avery DD (1984) Injections of bombesin into the substantia nigra produce hypothermia and hypophagia in food-deprived rats. Neuropharmacology 23:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Carino MA, Smith JR, Weick BG, Horita A (1976) Effects of thyrotropin-releasing hormone (TRH) microinjected into various brain areas of conscious and pentobarbital-pretreated rabbits. Life Sci 19:1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Charli JL, Ponce G, McKelvy JF, Joseph Bravo P (1984) Accumulation of thytrotropin releasing hormone by rat hypothalamic slices. J Neurochem 42:981–986

    Article  PubMed  CAS  Google Scholar 

  • Chi ML, Lin MT (1983) Involvement of adrenergic receptor mechanisms within hypothalamus in the fever induced by amphetamine and thyrotropin-releasing hormone in the rat. J Neural Transm 58:213–222

    Article  PubMed  CAS  Google Scholar 

  • Chiu WT, Lin LS, Shih CJ, Lin MT (1987) Bombesin-induced hypothermia: possible involvement of cholinergic and dopaminergic receptors in the rat hypothalamus. Exp Neurol 95:368–377

    Article  PubMed  CAS  Google Scholar 

  • Clark WG, Lipton JM (1983) Brain and pituitary peptides in thermoregulation. Pharmacol Ther 22:249–297

    Article  PubMed  CAS  Google Scholar 

  • Clark WG, Holdeman M, Lipton JM (1985) Analysis of the antipyretic action of alpha-melanocyte-stimulating hormone in rabbits. J Physiol (Lond) 359:459–465

    CAS  Google Scholar 

  • Colmers WF, Lukowiak K, Pittman QJ (1988) Neuropeptide Y action in the rat hippocampal slice: site and mechanism of presynaptic inhibition. J Neurosci 8:3827–3837

    PubMed  CAS  Google Scholar 

  • Cooper KE, Kasting NW, Lederis K, Veale WL (1979) Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep. J Physiol (Lond) 295:33–45

    CAS  Google Scholar 

  • Cooper KE, Naylor AM, Veale WL (1987) Evidence supporting a role for endogenous vasopressin in fever suppression in the rat. J Physiol (Lond) 387:163–172

    CAS  Google Scholar 

  • Cooper KE, Blahser S, Malkinson TJ, Merker G, Roth J, Zeisberger E (1988) Changes in body temperature and vasopressin content of brain neurons, in pregnant and non-pregnant guinea pigs, during fevers produced by Poly I: Poly C. Pflugers Arch 412:292–296

    Article  PubMed  CAS  Google Scholar 

  • Daynes RA, Robertson BA, Cho BH, Burnham DK, Newton R (1988) Alpha-melanocyte-stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin 1-inducible responses in vivo and in vitro. J Immunol 139:103–109

    Google Scholar 

  • Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381:314–321

    Article  PubMed  CAS  Google Scholar 

  • De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res 273:307–317

    Article  PubMed  Google Scholar 

  • De Vries FJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:236–254

    Article  Google Scholar 

  • Disturnal JE, Veale WL, Pittman QJ (1985) Electrophysiological analysis of potential arginine vasopressin projections to the ventral septal area of the rat. Brain Res 342:162–167

    Article  PubMed  CAS  Google Scholar 

  • Disturnal JE, Veale WL, Pittman QJ (1986) The ventral septal area: electrophysiological evidence for putative arginine vasopressin projections onto thermoresponsive neurons. Neuroscience 19:795–802

    Article  PubMed  CAS  Google Scholar 

  • Disturnal JE, Veale WL, Pittman QJ (1987) Modulation by arginine vasopressin of glutamate excitation in the ventral septal area of the rat brain. Can J Physiol Pharmacol 65:30–35

    Article  PubMed  CAS  Google Scholar 

  • Doris PA (1984) Vasopressin and central integrative processes. Neuroendocrinol 38:75–85

    Article  CAS  Google Scholar 

  • Dorsa DM, Majumdar LA, Petracca FM, Baskin DG, Cornett LE (1983) Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue. Peptides 4:699–706

    Article  PubMed  CAS  Google Scholar 

  • Eagan PC, Kasting NW, Veale WL, Cooper KE (1982) Absence of endotoxin fever but not prostaglandin E2 fever in the Brattleboro rat. Am J Physiol 242:R116–R120

    PubMed  CAS  Google Scholar 

  • Feng JD, Dao T, Lipton JM (1987) Effects of preoptic microinjecitons of alpha-MSH on fever and normal temperature control in rabbits. Brain Res Bull 18:473–477

    Article  PubMed  CAS  Google Scholar 

  • Ferguson A, Renaud LP (1987) In vivo electrophysiological techniques in the study of peptidergic neurons and actions. In: Boulton AA, Baker GB, Pittman QJ (eds) Neuromethods: peptides. Humana, New Jersey, pp 379–408

    Google Scholar 

  • Fisher LA, Cave CR, Brown MR (1985) Central nervous system effects of bombesin on the cardiovascular response to cold exposure. Brain Res 341:261–268

    Article  PubMed  CAS  Google Scholar 

  • Fregly MJ (1989) Activity of the hypothalamic-pituitary-thyroid axis during exposure to cold. Pharmacol Ther 41:85–142

    Article  PubMed  CAS  Google Scholar 

  • Fyda DM, Cooper KE, Veale WL (1989) Indomethacin-induced antipyresis in the rat: role of vasopressin receptors. Brain Res 494:307–314

    Article  PubMed  CAS  Google Scholar 

  • Glyn JR, Lipton JM (1981) Hypothermic and antipyretic affects of centrally administered ACTH (1–24) and a melanotropin. Peptides 2:177

    Article  PubMed  CAS  Google Scholar 

  • Glyn-Ballinger JR, Bernardini GL, Lipton JM (1983) alpha-MSH injected into the septal region reduces fever in rabbits. Peptides 4:199–203

    Article  PubMed  CAS  Google Scholar 

  • Hawkins MF, Avery DD (1983) Effects of centrally-administered bombesin and adrenalectomy on behavioral thermoregulation and locomotor activity. Neuropharmacology 22:1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Hernandez DE, Nemeroff CB, Valderrama MH, Prange AJ Jr (1984) Neurotensin-induced antinociception and hypothermia in mice: antagonism by TRH and structural analogs of TRH. Regul Pept 8:41–49

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Fuxe K, Johansson O, Jeffcoate SL, White N (1975) Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Eur J Pharmacol 34:389–392

    Article  PubMed  CAS  Google Scholar 

  • Holdeman M, Lipton JM (1985) Antipyretic activity of a potent alpha-MSH analog. Peptides 6:273–275

    Article  PubMed  CAS  Google Scholar 

  • Holdeman M, Khorram O, Samson WK, Lipton JM (1985) Fever-specific changes in central MSH and CRF concentrations. Am J Physiol 248:R125–R129

    PubMed  CAS  Google Scholar 

  • Hari T, Yamasaki M, Kiyohara T, Shibata M (1986) Responses of preoptic thermosensitive neurons to poikilothermia-inducing peptides — bombesin and neurotensin. Pflugers Arch 407:558–560

    Article  Google Scholar 

  • Hori T, Yamasaki M, Asami T, Koga H, Kiyohara T (1988) Responses of anterior hypothalamicpreoptic thermosensitive neurons to thyrotropin releasing hormone and cyclo(His-Pro). Neuropharmacology 27:895–901

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Suzuki M (1986) Antagonism by thyrotropin-releasing hormone (TRH) of pentobarbital-induced hypothermia in rats with brain lesions. Experientia 42:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz DM, O’Donohue TL (1978) α-Melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci USA 75:6300–6304

    Article  PubMed  CAS  Google Scholar 

  • Jansky L (1987) Effect of bombesin on thermoregulation of the rabbit. Pflugers Arch 409:318–322

    PubMed  CAS  Google Scholar 

  • Kandasamy SB, Williams BA (1984) Hypothermic and antipyretic effects of ACTH (1–24) and alpha-melanotropin in guinea-pigs. Neuropharmacology 23:49–53

    Article  PubMed  CAS  Google Scholar 

  • Kasting NW (1986a) Characteristics of body temperature, vasopressin, and oxytocin responses to endotoxin in the rat. Can J Physiol Pharmacol 64:1575–1578

    Article  CAS  Google Scholar 

  • Kasting NW (1986b) Potent stimuli for vasopressin release, hypertonic saline and hemorrhage, cause antipyresis in the rat. Regul Pept 15:293–300

    Article  CAS  Google Scholar 

  • Kasting NW (1989) Criteria for establishing a physiological role for brain peptides. A case in point: the role of vasopressin in thermoregulation during fever and antipyresis. Brain Res Rev 14:143–153

    Article  PubMed  CAS  Google Scholar 

  • Kasting NW, Martin JB (1983) Changes in immunoreactive vasopressin concentrations in brain regions of the rat in response to endotoxin. Brain Res 258:127–132

    Article  CAS  Google Scholar 

  • Kasting NW, Wilkinson MF (1986) An antagonist to the antipyretic effects of intracerebroventricularly administered vasopressin in the rat. In: Cooper KE, Lomax P, Schonbaum E, Veale WL (eds) Homeostasis and thermal stress. Karger, Basel, pp 137–139

    Google Scholar 

  • Kasting NW, Wilkinson MF (1987) Vasopressin functions as an endogenous antipyretic in the newborn. Biol Neonate 51:249–254

    Article  PubMed  CAS  Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1978a) Suppression of fever at term of pregnancy. Nature 271:245–246

    Article  CAS  Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1978b) Evidence for a centrally active, endogenous antipyretic near parturition. Curr Stud Hypothal Funct 2:63–71

    CAS  Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1979a) Development of fever in the newborn lamb. Am J Physiol 236:R184–R187

    CAS  Google Scholar 

  • Kasting NW, Cooper KE, Veale WL (1979b) Antipyresis following perfusion of brain sites with vasopressin. Experientia 35:208–209

    Article  CAS  Google Scholar 

  • Kasting NW, Veale WL, Cooper KE, Lederis K (1981) Effect of hemorrhage on fever: the putative role of vasopressin. Can J Physiol Pharmacol 59:324–328

    Article  PubMed  CAS  Google Scholar 

  • Kasting NW, Carr DB, Martin JB, Blume H, Bergland R (1983) Changes in cerebrospinal fluid and plasma vasopressin in the febrile sheep. Can J Physiol Pharmacol 61:427–431

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, De Wied D (1983) Hormonally active arginine-vasopressin suppresses endotoxin-induced fever in rats: lack of effect of oxytocin and a behaviorally active vasopressin fragment. Neuroendocrinology 37:258–261

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Liu B, Burbach JP, Van Ree JM, De Wied D (1989) N-alpha-acetyl-[Arg8]vasopressin antagonizes the behavioral effect of [Cyt6]vasopressin-(5–9), but not of vasopressin. Eur J Pharmacol 161:27–35

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Neumann I, Schwarzberg (1988) Central and peripheral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation. Brain Res 457:219–225

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Malkinson T, Horn T, Veale WL, Lederis K, Pittman QJ (1990) Release of vasopressin and oxytocin by paraventricular stimulation in rats. Am J Physiol 258:R155–R159

    PubMed  CAS  Google Scholar 

  • Landgraf R, Malkinson T, Veale WL, Lederis K, Pittman QJ (1990) Vasopressin and oxytocin in the rat brain in response to prostaglandin fever. Am J Physiol (in press)

    Google Scholar 

  • Lawrence JA, Poulin P, Lawrence D, Lederis K (1988) [3H]arginine vasopressin binding to rat brain: a homogenate and autoradiographic study. Brain Res 446:212–218

    Article  PubMed  CAS  Google Scholar 

  • Lightman SL (1988) The neuroendocrine paraventricular hypothalamus: receptors, signal transduction, mRNA and neurosecretion. J Exp Biol 139:31–49

    PubMed  CAS  Google Scholar 

  • Lin KS, Lin MT (1986) Effects of bombesin on thermoregulatory responses and hypothalamic neuronal activities in the rat. Am J Physiol 251:R303–R309

    PubMed  CAS  Google Scholar 

  • Lin LH, Pivorun EB (1986) Effects of intrahypothalamically administered norepinephrine, serotonin and bombesin on thermoregulation in the deermouse (Peromyscus maniculatus).Brain Res 364:212–219

    Article  PubMed  CAS  Google Scholar 

  • Lipton JM, Glyn JR (1980) Central administration of peptides alters thermoregulation in the rabbit. Peptides 1:15–20

    Article  PubMed  CAS  Google Scholar 

  • Malkinson TJ, Bridges TE, Lederis K, Veale WL (1987) Perfusion of the septum of the rabbit with vasopressin antiserum enhances endotoxin fever. Peptides 8:385–389

    Article  PubMed  CAS  Google Scholar 

  • Marianovich AT, Kudriavtseva EV, Gaivoronskii IV, Mikheev OP, Golubev VN (1987) Bombesin reduces body temperature chiefly by increasing peripheral blood flow (in Russian). Fiziol Zh SSSR 73:111–119

    CAS  Google Scholar 

  • Martin SM, Malkinson TJ, Veale WL, Pittman QJ (1990) Depletion of brain aMSH alters prostaglandin and interleukin fever in rats. Brain Res (in press)

    Google Scholar 

  • Mathieson WB, Federico P, Veale WL, Pittman QJ (1989) Single-unit activity in the bed nucleus of the stria terminalis during fever. Brain Res 486:49–55

    Article  PubMed  CAS  Google Scholar 

  • McCake JJ, Morrell JJ, Richter D, Pfaff DW (1986) Localization of neuroendocrinologically relevant RNA in brain by in situ hybridization. Front Neuroendocrinol 9:149–167

    Google Scholar 

  • McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin-releasing peptide from porcine nonantral gastric tissue. Biochem Biophys Res Commun 90:227–233

    Article  PubMed  CAS  Google Scholar 

  • Merker G, Blähser S, Zeisberger E (1980) Reactivity pattern of vasopressin-containing neurons and its relation to the antipyretic reaction in the pregnant guinea pig. Cell Tissue Res 212:47–61

    Article  PubMed  CAS  Google Scholar 

  • Milner RJ, Sutcliffe JG (1988) Molecular neurobiological strategies applied to the nervous system. Discuss Neurosci 5:1–63

    Google Scholar 

  • Moody TW, Pert CB (1979) Bombesin-like peptides in rat brain: quantitation and biochemical characterization. Biochem Biophys Res Commun 90:7–14

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Pert C, Rivier J, Brown M (1978) Bombesin: specific binding to rat brain membranes. Proc Natl Acad Sci USA 75:5372–5376

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Thoa NB, O’Donohue TL, Pert CB (1980) Bombesin-like peptides in rat brain: localization in synaptosomes and release from hypothalamic slices. Life Sci 26:1707–1712

    Article  PubMed  CAS  Google Scholar 

  • Murphy MT, Richards DB, Lipton JM (1983) Antipyretic potency of centrally administered alphamelanocyte stimulating hormone. Science 221:192–193

    Article  PubMed  CAS  Google Scholar 

  • Myers RD (1980) Hypothalamic control of thermoregulation: neurochemical mechanisms. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 3. Dekker, New York, pp 83–210

    Google Scholar 

  • Naylor AM, Ruwe WD, Kohut AF, Veale WL (1985) Perfusion of vasopressin within the ventral septum of the rabbit suppresses endotoxin fever. Brain Res Bull 15:209–213

    Article  PubMed  CAS  Google Scholar 

  • Naylor AM, Ruwe WD, Veale WL (1986a) Thermoregulatory actions of centrally-administered vasopressin in the rat. Neuropharmacology 25:787–794

    Article  CAS  Google Scholar 

  • Naylor AM, Ruwe WD, Veale WL (1986b) Antipyretic action of centrally administered arginine vasopressin but not oxytocin in the cat. Brain Res 385:156–160

    Article  CAS  Google Scholar 

  • Naylor AM, Cooper KE, Veale WL (1987a) Vasopressin and fever: evidence supporting the existence of an endogenous antipyretic system in the brain. Can J Physiol Pharmacol 65:1333–1338

    Article  CAS  Google Scholar 

  • Naylor AM, Gubitz GJ, Dinarello CA, Veale WL (1987b) Central effects of vasopressin and 1-desamino-8-D-arginine vasopressin (DDAVP) on interleukin-1 fever in the rat. Brain Res 401:173–177

    Article  CAS  Google Scholar 

  • Naylor AM, Pittman QJ, Veale WL (1988) Stimulation of vasopressin release in the ventral septum of the rat brain suppresses prostaglandin El fever. J Physiol (Lond) 399:177–189

    CAS  Google Scholar 

  • Okuda C, Mizobe T, Miyazaki M (1988) Effects of hypothermia on thyrotropin-releasing hormone content in the rat brain. Pharmacol Biochem Behav 30:941–944

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M (1983) Neuroanatomical techniques. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley, New York, pp 495–545

    Google Scholar 

  • Panula P, Yang H-YT, Costa E (1982) Neuronal location of the bombesin-like immunoreactivity in the central nervous system of the rat. Regul Pept 4:275–283

    Article  PubMed  CAS  Google Scholar 

  • Pittman QJ, Cooper KE, Veale WL, Van Petten GR (1973) Fever in newborn lambs. Can J Physiol Pharmacol 51:868–872

    Article  PubMed  CAS  Google Scholar 

  • Pittman QJ, Taché Y, Brown MR (1980) Bombesin acts in preoptic areas to produce hypothermia in rats. Life Sci 26:725–730

    Article  PubMed  CAS  Google Scholar 

  • Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat. Brain Res 251:15–28

    Article  Google Scholar 

  • Pittman QJ, Riphagen CL, Lederis K (1984) Release of immunoassayable neurohypophyseal peptides from rat spinal cord, in vivo. Brain Res 300:321–326

    Article  PubMed  CAS  Google Scholar 

  • Pittman QJ, Disturnal J, Riphagen C, Veale WL, Bauce L (1985) Perfusion techniques for neural tissue. In: Neuromethods 1: general neurochemical techniques. Humana, New Jersey, pp 279–303

    Google Scholar 

  • Pittman QJ, MacVicar BA, Colmers WF (1987) In vitro preparations for electrophysiological study of peptide neurons and actions. In: Neuromethods 6: Peptides. Humana, New Jersey, pp 409–438

    Google Scholar 

  • Pittman QJ, Malkinson TJ, Kasting NW, Veale WL (1988a) Enhanced fever following castration: possible involvement of brain arginine vasopressin. Am J Physiol 254:R513–R517

    CAS  Google Scholar 

  • Pittman QJ, Naylor A, Poulin P, Disturnal J, Veale WL, Martin SM, Malkinson TJ, Mathieson B (1988b) The role of vasopressin as an antipyretic in the ventral septal area and its possible involvement in convulsive disorders. Brain Res Bull 20:887–892

    Article  CAS  Google Scholar 

  • Poulin P, Lederis K, Pittman QJ (1988) Subcellular localization and characterization of vasopressin binding sites in the ventral septal area, lateral septum and hippocampus of the rat brain. J Neurochem 50:889–898

    Article  PubMed  CAS  Google Scholar 

  • Rasler FE (1983) Bombesin produces hypothermia in hypophysectomized rats. Life Sci 32:2503–2507

    Article  PubMed  CAS  Google Scholar 

  • Renaud LP, Martin JB Brazeau R (1975) Depressant action of TRH, LHRH and somatostatin on activity of central neurons. Nature 225:233–235

    Article  Google Scholar 

  • Rezvani AH, Denbow DM, Myers RD (1986) Alpha-melanocyte-stimulating hormone infused ICV fails to affect body temperature or endotoxin fever in the cat. Brain Res Bull 16:99–105

    Article  PubMed  CAS  Google Scholar 

  • Richards DB, Lipton JM (1984) Effect of alpha-MSH 11–13 (lysine-proline-valine) on fever in the rabbit. Peptides 5:815–817

    Article  PubMed  CAS  Google Scholar 

  • Riphagen CL, Pittman QJ (1986) Arginine vasopressin as a central neurotransmitter. Fed Proc 45:2318–2322

    PubMed  CAS  Google Scholar 

  • Robertson B, Dostal K, Daynes RA (1988) Neuropeptide regulation of inflammatory and immunologic responses. The capacity of alpha-melanocyte-stimulating hormone to inhibit tumor necrosis factor and IL-1-inducible biologic responses. J Immunol 140:4300–4307

    PubMed  CAS  Google Scholar 

  • Ruwe WD, Veale WL, Cooper KE (1983) Characterization of the febrile response in the Brattleboro rat. In: Lomax P, Schonbaum E (eds) Environment, drugs and thermoregulation. Karger, Basel, pp 128–134

    Google Scholar 

  • Ruwe WD, Naylor AM, Veale WL (1985) Perfusion of vasopressin within the rat brain suppresses prostaglandin E-hyperthermia. Brain Res 338:219–224

    Article  PubMed  CAS  Google Scholar 

  • Samson WK, Lipton JM, Zimmer JA, Glyn JR (1981) The effect of fever on central aMSH concentrations in the rabbit. Peptides 2:419–423

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kato T, Miyamori C, Kajiwara S, Murata A, Imura E, Sakura N, Hashimoto T (1986) Effects of thyrotropin-releasing hormone and cyclo-histidine-proline on the homeothermic development of neonatal rats. Acta Endocrinol (Copenh) 113:181–188

    CAS  Google Scholar 

  • Sharp T, Tulloch IF, Bennett GW, Marsden CA, Metcalf G, Dettmar PW (1984) Analeptic effects of centrally injected TRH and analogues of TRH in the pentobarbitone-anaesthetized rat. Neuropharmacology 23:339–348

    Article  PubMed  CAS  Google Scholar 

  • Shido O, Noda Y, Nagasaka T (1987) Suppression of brown adipose tissue metabolism following intraventricular bombesin in rats. Jpn J Physiol 37:573–583

    Article  PubMed  CAS  Google Scholar 

  • Shih ST, Lipton JM (1985) Intravenous alpha-MSH reduces fever in the squirrel monkey. Peptides 6:685–687

    Article  PubMed  CAS  Google Scholar 

  • Shih ST, Khorram O, Lipton JM, McCann SM (1986) Central administration of alpha-MSH antiserum augments fever in the rabbit. Am J Physiol 250:R803–R806

    PubMed  CAS  Google Scholar 

  • Simon E, Pierau F-K, Taylor DCM (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66:235–300

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MW (1983) Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends Neurosci 6:467–472

    Article  CAS  Google Scholar 

  • Tache Y, Pittman Q, Brown M (1980) Bombesin-induced poikilothermy in rats. Brain Res 188:525–530

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen J (1987) Immunocytochemical techniques in peptide localization: possibilities and pitfalls. In: Boulton AA, Baker GB, Pittman QJ (eds) Neuromethod: peptides. Humana, New Jersey, pp 73–112

    Chapter  Google Scholar 

  • Werman R (1966) Criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18:745–766

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MF, Kasting NW (1987a) The antipyretic effects of centrally administered vasopressin at different ambient temperatures. Brain Res 415:275–280

    Article  CAS  Google Scholar 

  • Wilkinson MF, Kasting NW (1987b) Antipyresis due to centrally administered vasopressin differentially alters thermoregulatory effectors depending on the ambient temperature. Regul Pept 19:45–54

    Article  CAS  Google Scholar 

  • Wilkinson MF, Kasting NW (1989) Central vasopressin V1-receptors mediate indomethacin-induced antipyresis in rats. Am J Physiol 256:R1164–R1168

    PubMed  CAS  Google Scholar 

  • Wilkinson MF, Kasting NW (1990) Centrally acting vasopressin contributes to endotoxin tolerance. Am J Physiol 258:R443–R449

    PubMed  CAS  Google Scholar 

  • Williams PJ, MacVicar BA, Pittman QJ (1989) A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience 31:673–681

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, Utiger RD (1974) Thyrotropin-releasing hormone: regional distribution in rat brain. Science 185:265–267

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mori M, Ishikawa K, Suzuki M (1986) Antagonism by thyrotropin-releasing hormone of brain temperature in response to pentobarbital in the rat: possible involvement of cholinergic mechanism. Proc Soc Exp Biol Med 183:368–371

    PubMed  CAS  Google Scholar 

  • Yarbrough GC (1976) TRH potentiates excitatory action of acetylcholine on cerebral cortical neurons. Nature 263:523–524

    Article  PubMed  CAS  Google Scholar 

  • Zadina JE, Banks WA, Kastin AJ (1986) Central nervous system effects of peptides. 1980–1985: a cross-listing of peptides and their central actions from the first six years of the journal Peptides. Peptides 7:497–537

    Article  PubMed  CAS  Google Scholar 

  • Zaida SMA, Heller H (1974) Can neurohypophysical hormones cross the blood brain barrier? J Endocrinol 60:195–196

    Article  Google Scholar 

  • Zeisberger E, Merker G, Blähser (1981) Fever response in the guinea pig before and after parturition. Brain Res 212:379–392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pittman, Q.J., Thornhill, J.A. (1990). Neuropeptide Mechanisms Affecting Temperature Control. In: Ganten, D., Pfaff, D. (eds) Behavioral Aspects of Neuroendocrinology. Current Topics in Neuroendocrinology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75837-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75837-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75839-3

  • Online ISBN: 978-3-642-75837-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics