Skip to main content

The Neuroendocrinology of Thirst: Afferent Signaling and Mechanisms of Central Integration

  • Conference paper
Behavioral Aspects of Neuroendocrinology

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 10))

Abstract

An animal at rest loses water continuously to the external environment. This decline in hydration is accelerated by environmental and dietary challenges which increase renal water excretion and evaporative fluid loss associated with perspiration and respiration. The body responds to an accumulating fluid deficit by activating multiple hormonal (e.g., antidiuretic hormone) and efferent neural (e.g. sympathetic) control systems, which act to decrease the rate of loss and optimize the distribution of available fluids within the body. Although such compensatory responses serve temporarily to stem the tide of dehydration, fluid homeostasis can be restored only by ingestion of water. Drinking as a response to replete fluid loss is vital and has been termed homeostatic drinking (see Fitzsimons 1972; Epstein et al. 1973; Peters et al. 1975; Fitzsimons 1979; Rolls and Rolls 1982; and de Caro et al. 1986, for reviews of the physiology of thirst). (Depending on the author or discipline, the term thirst has been used in a variety of different ways. It has been used to describe a sensation and as a hypothetical construct or intervening variable. In the present essay, thirst is used simply as a substitute for water intake, drinking, or drinking behavior. The term thirst is used here for the convenience of providing some literary variety.)

Studies from the authors’ laboratory discussed in this chapter were supported in part by United States Public Health Service grants HLP 14388, HL 33447, HL 35600, and MH 00064 and by the Iowa Affiliate of the American Heart Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi A, Kobashi M (1985) Chemosensitive neurons within the area postrema of the rat. Neurosci Lett 55:137–140

    PubMed  CAS  Google Scholar 

  • Adachi A, Niijima A, Jacobs HL (1976) An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies. Am J Physiol 231(4):1043–1049

    PubMed  CAS  Google Scholar 

  • Almli RC, Weiss CS (1974) Drinking behaviors: effects of lateral preoptic and lateral hypothalamic destruction. Physiol Behav 13:527–538

    PubMed  CAS  Google Scholar 

  • Andersson B (1953) The effect of injections of hypertonic NaCl-solutions into different parts of the hypothalamus of goats. Acta Physiol Scand 28:188–201

    PubMed  CAS  Google Scholar 

  • Andersson B (1971) Thirst and brain control of water balance. Am Sci 59:408–415

    PubMed  CAS  Google Scholar 

  • Andersson B, Olsson K, Warner RG (1967) Dissimilarities between the central control of thirst and the release of antidiuretic hormone (ADH). Acta Physiol Scand 71:57–64

    PubMed  CAS  Google Scholar 

  • Andersson B, Leksell LG, Lishajko F (1975) Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Res 99:261–275

    PubMed  CAS  Google Scholar 

  • Andrews WHH, Orbach J (1974) Sodium receptors activating some nerves of perfused rabbit livers. Am J Physiol 227:1273–1275

    PubMed  CAS  Google Scholar 

  • Baertschi AJ, Vallet PG (1981) Osmosensitivity of the hepatic portal vein area and vasopressin release in rats. J Physiol (Lond) 314:217–230

    Google Scholar 

  • Bealer SL, Johnson AK (1980) Preoptic-hypothalamic periventricular lesions alter food-associated drinking and circadian rhythms. J Comp Physiol Psychol 94:547–555

    PubMed  CAS  Google Scholar 

  • Bealer SL, Phillips MI, Johnson AK, Schmid PG (1979) Anteroventral third ventricle lesions reduce antidiuretic response to angiotensin II. Am J Physiol 236:E610–E615

    PubMed  CAS  Google Scholar 

  • Bealer SL, Haywood JR, Gruber KA, Buckalew VM, Fink GD, Brody ML, Johnson AK (1983) Preoptic-hypothalamic periventricular lesions reduce natriuresis to volume expansion. Am J Physiol 244:R51–57

    PubMed  CAS  Google Scholar 

  • Bellin SI, Bhatnagar RK, Johnson AK (1987a) Periventricular noradrenergic systems are critical for angiotensin-induced drinking and blood pressure responses. Brain Res 403:105–112

    CAS  Google Scholar 

  • Bellin SI, Landas SK, Johnson AK (1987b) Localized injections of 6-hydroxydopamine into lamina terminalis-associated structures: effects on experimentally-induced drinking and pressor responses. Brain Res 416:75–83

    CAS  Google Scholar 

  • Bellin SI, Landas SK, Johnson AK (1988) Selective catecholamine depletion of structures along the ventral lamina terminalis: effects on experimentally-induced drinking and pressor responses. Brain Res 456:9–16

    PubMed  CAS  Google Scholar 

  • Blake WD, Lin KK (1978) Hepatic portal vein infusion of glucose and sodium solutions on the control of saline drinking in the rat. J Physiol (Lond) 274:129–139

    CAS  Google Scholar 

  • Blass EM, Epstein AN (1971) A lateral preoptic osmosensitive zone for thirst in the rat. J Comp Physiol Psychol 76:378–394

    PubMed  CAS  Google Scholar 

  • Blessing WW, Willoughby JO (1988) Adrenoreceptor agents and baroreceptor-initiated secretion of vasopressin. In: Cowley AW Jr, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative function. Raven, New York, pp 349–353

    Google Scholar 

  • Block ML, Fisher AE (1975) Cholinergic and dopaminergic blocking agents modulate water intake elicited by deprivation, hypovolemia, hypertonicity and isoproterenol. Pharmacol Biochem Behav 3:251–262

    PubMed  CAS  Google Scholar 

  • Breese GR, Traylor T (1970) Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: evidence for selective degeneration of catecholamine neurons. Pharmacol Exp Ther 174:413–420

    CAS  Google Scholar 

  • Breese GR, Traylor T (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 42:88–99

    PubMed  CAS  Google Scholar 

  • Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven, New York, pp 249–292

    Google Scholar 

  • Brown AM (1980) Receptors under pressure. Circ Res 46:1–10

    PubMed  CAS  Google Scholar 

  • Buggy J, Fisher AE (1976) Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacol Biochem Behav 4:651–660

    PubMed  CAS  Google Scholar 

  • Buggy J, Johnson AK (1977a) Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am J Physiol 233:R44–R52

    CAS  Google Scholar 

  • Buggy J, Johnson AK (1977b) Anteroventral third ventricle periventricular ablation: temporary adipsia and persisting thirst deficits. Neurosci Lett 5:177–182

    CAS  Google Scholar 

  • Buggy J, Johnson AK (1978) Angiotensin-induced thirst: effects of third ventricular obstruction and periventricular ablation. Brain Res 149:117–128

    PubMed  CAS  Google Scholar 

  • Buggy J, Fisher AE, Hoffman W, Johnson AK, Phillips MI (1975) Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin. Science 190:72–74

    PubMed  CAS  Google Scholar 

  • Buggy J, Fink GD, Johnson AK, Brody MJ (1977) Prevention of the development of renal hypertension by anteroventral third ventricular tissue lesions. Circ Res 40:J110–J117

    Google Scholar 

  • Buggy J, Hoffman WE, Phillips MI, Fisher AE, Johnson AK (1979) Osmosensitivity of rat third ventricle and interactions with angiotensin. Am J Phsiol 236:R75–R82

    CAS  Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1983) Responses of neurons of canine area postrema to neurotransmitters and peptides. Cell Mol Neurobiol 3:113–126

    PubMed  CAS  Google Scholar 

  • Chalbinska-Moneta J (1979) Role of hepatic portal osmoreception in the control of ADH release. Am J Physiol 236(6):E603–E609

    Google Scholar 

  • Ciriello J, Hrycyshyn AW, Calaresu FR (1981) Glossopharyngeal and vagal afferent projection to the brain stem of the cat: a horseradish peroxidase study. J Auton Nery Syst 4:63–79

    CAS  Google Scholar 

  • Ciriello J, Caverson MM, Polosa C (1986) Function of the ventrolateral medulla in the control of the circulation. Brain Res Rev 11:359–391

    Google Scholar 

  • Clemente CD, Sutin J, Silverstone JT (1957) Changes in electrical activity of the medulla on the intravenous injection of hypertonic solutions. Am J Physiol 188:193–198

    PubMed  CAS  Google Scholar 

  • Coburn PC, Stricker EM (1978) Osmoregulatory thirst in rats after lateral preoptic lesions. J Comp Physiol Psychol 92:350–361

    PubMed  CAS  Google Scholar 

  • Contreras RJ, Stetson PW (1981) Changes in salt intake after lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Res 211:355–366

    PubMed  CAS  Google Scholar 

  • Cunningham JT, Johnson AK (1988) Models for the integration of humoral and neural factors critical to body fluid homeostasis. In: Yoshida S, Share L (eds) Recent progress in posterior pituitary hormones. Elsevier, Amsterdam, pp 97–105

    Google Scholar 

  • Cunningham JT, Johnson AK (1989) Decreased norepinephrine in the ventral terminalis region is associated with angiotensin II drinking response deficits following local 6-hydroxydopamine injections. Brain Res 480:54–71

    Google Scholar 

  • Cushny AR (1926) The secretion of the urine. Longmans, London, pp 135–137

    Google Scholar 

  • de Caro G, Epstein AN, Massi M (1986) The physiology of thirst and sodium appetite. Plenum, New York

    Google Scholar 

  • Dellman H-D (1985) Fine structural organization of the subfornical organ. A concise review. Brain Res Bull 15:71–78

    Google Scholar 

  • Edwards GL, Johnson AK (1987) Ibotenic acid lesions of the lateral parabrachial nucleus causes enhanced drinking to extracellular thirst challenges. Fed Proc 46:12–35

    Google Scholar 

  • Edwards GL, Ritter RC (1982) Area postrema lesions increase drinking to angiotensin and extra-cellular dehydration. Physiol Behav 29:943–947

    PubMed  CAS  Google Scholar 

  • Edwards GL, Ritter RC (1989) Lateral parabrachial lesions attenuate ingestive effects of area postrema lesions. Am J Physiol 256:R306–R312

    PubMed  CAS  Google Scholar 

  • Edwards GL, Beltz TG, Johnson AK (1988) Enhanced excretion of sodium by area postrema-lesioned rats after intragastric saline loads. Soc Neurosci Abstr 14:316, 130.11

    Google Scholar 

  • Edwards GL, Cunningham JT, Beltz TG, Johnson AK (1989) Neuropeptide Y immunoreactive cells in the caudal medulla project to the median preoptic nucleus. Neurosci Lett 105:19–26

    PubMed  CAS  Google Scholar 

  • Elam M, Svensson TH, Thoren P (1985) Differentiated cardiovascular afferent regulation of the locus coeruleus neurons and sympathetic nerves. Brain Res 358:77–84

    PubMed  CAS  Google Scholar 

  • Eng R, Miselis RR (1981) Polydipsia and abolition of angiotensin-induced drinking after transections of subfornical organ efferent projections in the rat. Brain Res 225:200–206

    PubMed  CAS  Google Scholar 

  • Epstein AN (1973) Epilogue: retrospect and prognosis. In: Epstein AN, Kissileff HR, Stellar E (eds) The neuropsychology of thirst: new findings and advances in concepts. Wiley, New York, pp 315–332

    Google Scholar 

  • Epstein AN (1982) The physiology of thirst. In: Pfaff DW (ed) The physiological mechanisms of motivation. Springer, Berlin Heidelberg New York, pp 165–214

    Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–474

    CAS  Google Scholar 

  • Epstein AN, Kissileff HR, Stellar E (1973) The neuropsychology of thirst: new findings and advances in concepts. Wiley, New York

    Google Scholar 

  • Felix D, Phillips MI (1979) Inhibitory effects of luteinizing hormone releasing hormone (LHRH) on neurons in the organum vasculosum lamina terminalis (OVLT). Brain Res 169:204–208

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1961) Drinking by rats depleted of body fluid without increase in osmotic pressure. J Physiol (Lond) 159:297–309

    CAS  Google Scholar 

  • Fitzsimons JT (1964) Drinking caused by constriction of the inferior vena cava on the rat. Nature 204:479–480

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1966) Hypovolaemic drinking and renin. J Physiol (Lond) 186:130–131

    Google Scholar 

  • Fitzsimons JT (1967) The kidney as a thirst receptor. J Physiol (Lond) 191:128–129

    Google Scholar 

  • Fitzsimons JT (1969) The role of a renal thirst factor in drinking induced by extracellular stimuli. J Physiol 201:349–368

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1972) Thirst. Physiol Rev 52:468–561

    CAS  Google Scholar 

  • Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Cambridge University Press, Cambridge

    Google Scholar 

  • Fitzsimons JT, Le Magnen J (1969) Eating as a regulatory control of drinking in the rat. J Comp Physiol Psychol 67:273–283

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Oatley K (1968) Additivity of stimuli for drinking in rats. J Comp Physiol Psychol 66:450–455

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Simons BJ (1969) The effect on drinking in the rat of intravenous angiotensin, given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203:45–57

    CAS  Google Scholar 

  • Foote SK, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Google Scholar 

  • Ganten D, Hutchinson JS, Schelling P, Ganten U, Fischer H (1976) The iso-renin angiotensin systems in extrarenal tissue. Clin Exp Pharmacol Physiol 3:103–126

    PubMed  CAS  Google Scholar 

  • Ganten D, Printz M, Phillipe MI, Scholkens BA (eds) (1982) The renin angiotensin system in the brain. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Gardner TW, Stricker EM (1985) Impaired drinking responses of rats with lesions of nucleus medianus: circadian dependence. Am J Physiol 248:R224–R230

    Google Scholar 

  • Gilman A (1937) The relation between blood osmotic pressure, fluid distribution and voluntary water intake. Am J Physiol 120:323–328

    CAS  Google Scholar 

  • Gray TS, Cassell MD, Williams TH, Lind RW, Johnson AK (1982) The subfornical organ-median preoptic pathway: evidence suggesting that an All-like substance may be a neurotransmitter in this projection. Neurosci Abstr 8:102

    Google Scholar 

  • Gronan RJ, York DH (1978) Effects of angiotensin II and acetylcholine on neurons in the preoptic area. Brain Res 154:172–177

    PubMed  CAS  Google Scholar 

  • Gutkind JS, Kurihara M, Castren E, Saavedra JM (1988) Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. J Hypertens 6:79–84

    PubMed  CAS  Google Scholar 

  • Haberich FJ (1968) Osmoreception in the portal circulation. Fed Proc 27:1137–1141

    PubMed  CAS  Google Scholar 

  • Harding JW, Stone LP, Wright JW (1981) The distribution of angiotensin II binding sites in rodent brain. Brain Res 205:265–274

    PubMed  CAS  Google Scholar 

  • Hatton GI, Almli CR (1969) Plasma osmotic pressure and volume changes as determinants of drinking thresholds. Physiol Behav 4:207–214

    Google Scholar 

  • Herbert H, Moga MM, Saper CB (1987) Peptidergic projections from the nucleus of the solitary tract to the parabrachial nucleus. Soc Neurosci Abstr 13:728, 203.2

    Google Scholar 

  • Hoffman WE, Phillips MI (1976) Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Res 110:313–330

    PubMed  CAS  Google Scholar 

  • Hosutt JA, Rowland N, Stricker EM (1978) Hypotension and thirst in rats after isoproterenol treatment. Physiol Behav 21:593–598

    PubMed  CAS  Google Scholar 

  • Hosutt JA, Rowland N, Stricker EM (1981) Impaired drinking responses of rats with lesions of the subfornical organ. J Comp Physiol Psychol 95:104–113

    PubMed  CAS  Google Scholar 

  • Housley GD, Martin-Body RL, Dawson NJ, Sinclair JD (1987) Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 22:237–250

    PubMed  CAS  Google Scholar 

  • Hsiao S, Epstein AN, Camardo JS (1977) The dipsogenic potency of peripheral angiotensin II. Horm Behav 8:129–140

    PubMed  CAS  Google Scholar 

  • Hyde TM, Miselis RR (1984) Area postrema and adjacent nucleus of the solitary tract in water and sodium balance. Am J Physiol 247:R173–R182

    PubMed  CAS  Google Scholar 

  • Iovino M, Papa M, Monteleone P, Steardo L (1988) Neuroanatomical and biochemical evidence for the involvement of the area postrema in the regulation of vasopressin release in rats. Brain Res 447:178–182

    PubMed  CAS  Google Scholar 

  • Jahr E, Nicoll RA (1932) Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature (Lond) 297:227–229

    Google Scholar 

  • Jerome C, Smith GP (1982a) Gastric vagotomy inhibits drinking after hypertonic saline. Physiol Behav 28:371–374

    CAS  Google Scholar 

  • Jerome C, Smith GP (1982b) Gastric or coeliac vagotomy decreases drinking after peripheral angiotensin II. Physiol Behav 29:533–536

    CAS  Google Scholar 

  • Johnson AK (1975) The role of the cerebral ventricular system in angiotensin-induced thirst. In: Peters F, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer, Berlin Heidelberg New York, pp 117–122

    Google Scholar 

  • Johnson AK (1982) Neurobiology of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) and its role in behavior, fluid balance, and cardiovascular control. In: Smith OA, Galosy RA, Weiss SM (eds) Circulation neurobiology behavior. Elsevier, New York, pp 277–295

    Google Scholar 

  • Johnson AK (1985a) Role of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) in the regulation of body fluid homeostasis. In: Schrier RW (ed) Vasopressin. Raven, New York, pp 319–382

    Google Scholar 

  • Johnson AK (1985b) The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull 15:595–601

    CAS  Google Scholar 

  • Johnson AK (1990) Brain mechanisms and the control of body fluid homeostasis. In: Gisolfi CV, Lamd DR (eds) Perspectives in exercise science and sports medicine: fluid homeostasis during exercise. Benchmark, Indianapolis, pp 347–424

    Google Scholar 

  • Johnson AK, Buggy J (1977) A critical analysis of the site of action for the dipsogenic effect of angiotensin II. In: Buckley JP, Ferrario C, Lokhandwale MF (eds) Central action of angiotensin and related hormones. Pergamon, Elmsford

    Google Scholar 

  • Johnson AK, Buggy J (1978) Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Am J Physiol 234:R122–R129

    PubMed  CAS  Google Scholar 

  • Johnson AK, Cunningham JT (1987) Brain mechanisms and drinking: the role of lamina terminalis-associated systems and extracellular thirst. Kidney Int 32:535–542

    Google Scholar 

  • Johnson AK, Epstein AN (1975) The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Res 86:399–418

    PubMed  CAS  Google Scholar 

  • Johnson AK, Schwob JE (1975) Cephalic angiotensin receptors mediating drinking to systemic angiotensin II. Pharmacol Biochem Behav 3:1077–1084

    PubMed  CAS  Google Scholar 

  • Johnson AK, Wilkin LD (1987) The integrative role of neural systems of the lamina terminalis in the regulation of body fluid homeostasis. In: Gross P (ed) Circumventricular organs and body fluid homeostasis. CRC Press, Boca Raton, pp 125–141

    Google Scholar 

  • Johnson AK, Hoffman WE, Buggy J (1978) Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic-hypothalamic periventricular ablation. Brain Res 157:161–166

    PubMed  CAS  Google Scholar 

  • Johnson AK, Mann JFE, Rascher W, Johnson JK, Ganten D (1981) Plasma angiotensin II concentrations and experimentally induced thirst. Am J Physiol 240:R229–R234

    PubMed  CAS  Google Scholar 

  • Johnson AK, Robinson MM, Mann JFE (1986) The role of the renal renin-angiotensin system in thirst. In: deCaro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum, New York, pp 161–180

    Google Scholar 

  • Kahrilas PJ, Rogers RC (1984) Rat brainstem neurons responsive to changes in portal blood sodium concentration. Am J Physiol 247:R792–R799

    PubMed  CAS  Google Scholar 

  • Kalia M, Mesulam MM (1980) Brain stem projections of afferent and efferent fibers of the vagus nerve in the cat. II. Laryngeal, tracheobronchial, pulmonary, cardiac and gastrointestinal branches. J Comp Neurol 193:523–553

    Google Scholar 

  • Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    PubMed  CAS  Google Scholar 

  • Kaufman S (1984) Role of right atrial receptors in the control of drinking in the rat. J Physiol (Lond) 349:389–396

    CAS  Google Scholar 

  • Knowles WD, Phillips MI (1980) Angiotensin II responsive cells in the organum vasculosum lamina terminalis (OVLT) recorded in hypothalamic brain slices. Brain Res 197:256–259

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Jacobowitz DM (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev 26:199–288

    PubMed  CAS  Google Scholar 

  • Kraly FS (1978) Abdominal vagotomy inhibits osmotically induced drinking in the rat. J Comp Physiol Psychol 92:999–1013

    PubMed  CAS  Google Scholar 

  • Kraly FS (1984) Physiology of drinking elicited by eating. Psychol Rev 91:478–490

    PubMed  CAS  Google Scholar 

  • Kraly FS, Gibbs J, Smith GP (1975) Disordered drinking after abdominal vagotomy in rats. Nature 258:226–228

    PubMed  CAS  Google Scholar 

  • Lanca AJ, van der Kooy D (1985) A serotonin containing pathway from the area postrema to the parabrachial nucleus in the rat. Neuroscience 14:1117–1126

    PubMed  CAS  Google Scholar 

  • Leslie RA (1986) Comparative aspects of the area postrema: fine-structural considerations help to determine its function. Cell Mol Neurobiol 6:95–120

    PubMed  CAS  Google Scholar 

  • Lind H, Lind RW, Shrager EE, Bealer SL, Johnson AK (1979) Critical tissues within the periventricular region of the anteroventral third ventricle (AV3V) associated with thirst deficits. Soc Neurosci Abstr 5:220

    Google Scholar 

  • Lind RW, Johnson AK (1981) Periventricular preoptic-hypothalamic lesions: effects on isoproterenol induced thirst. Pharmacol Biochem Behav 15:563–565

    PubMed  CAS  Google Scholar 

  • Lind RW, Johnson AK (1982a) Subfornical organ-median preoptic connections and drinking and pressor responses to angiotensin II. J Neurosci 2:1043–1051

    CAS  Google Scholar 

  • Lind RW, Johnson AK (1982b) Central and peripheral mechanisms mediating angiotensin-induced thirst. In: Ganten D, Printz M, Phillips MI, Scholkens BA (eds) The renin angiotensin system in the brain. Springer, Berlin Heidelberg New York, pp 353–364 (Experimental brain research series, vol 4)

    Google Scholar 

  • Lind RW, Johnson AK (1982c) On the separation of functions mediated by the AV3V region. Peptides 3:495–499

    CAS  Google Scholar 

  • Lind RW, Johnson AK (1983) A further characterization of the effects of AV3V lesions on ingestive behavior. Am J Physiol 245:R83–R90

    PubMed  CAS  Google Scholar 

  • Lind RW, Hartle DK, Brody MJ, Johnson AK (1981) Separation of the functional deficits induced by lesions of the AV3V. Fed Proc 40:390

    Google Scholar 

  • Lind RW, Van Hoesen GW, Johnson AK (1982) An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210:265–277

    PubMed  CAS  Google Scholar 

  • Lind RW, Thunhorst RL, Johnson AK (1984) The subfornical organ and the integration of multiple factors in thirst. Physiol Behav 32:69–74

    PubMed  CAS  Google Scholar 

  • Lind W, Ganten D (1990) Angiotensin. In: Bjorklund A, Hokfelt T, Kuhar MJ (eds) Neuropeptides in the CNS. Elsevier, Amsterdam (Handbook of chemical neuroanatomy, vol 9, part II) (in press)

    Google Scholar 

  • Lindvall O, Bjorklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand 412:1–48

    CAS  Google Scholar 

  • Lynch KR, Hawelu-Johnson CL, Guyenet PG (1987) Localization of brain angiotensinogen mRNA by hybridization histochemistry. Mol Brain Res 2:149–158

    CAS  Google Scholar 

  • Mangiapane ML, Thrasher TN, Keil LC, Simpson JB, Ganong WF (1983) Deficits in drinking and vasopressin secretion after lesion of the nucleus medianus. Neuroendocrinology 37:73–77

    PubMed  CAS  Google Scholar 

  • Mann JFE, Johnson AK, Ganten D (1980) Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol 238:R372–R377

    PubMed  CAS  Google Scholar 

  • Mantyh PW, Hunt SP (1984) Neuropeptides are present in projection neurons at all levels in visceral and taste pathways from periphery to the sensory cortex. Brain Res 299:297–311

    PubMed  CAS  Google Scholar 

  • Martin JR (1981) Effects of partial and complete vagal denervation on spontaneous ingestion and drinking induced with volemic and osmotic regulatory challenges. J Neurosci Rev 6:243–250

    CAS  Google Scholar 

  • Martin JR, Novin D (1981) Response to dipsogenic stimuli after abdominal vagotomy in rats. Physiol Psychol 9:181–186

    Google Scholar 

  • Mayer A (1900) Variation de la tension osmotique du sang chex les animaux prives de liquides. C R Soc Biol (Paris) 52:153–155

    Google Scholar 

  • McKinley MJ, Denton DA, Weisinger RS (1978) Sensors for antidiuresis and thirst — osmoreceptors or CSF sodium detectors? Brain Res 141:89–103

    PubMed  CAS  Google Scholar 

  • McKinley MJ, Denton DA, Leksell LG, Mouw DR, Scoggins BA, Smith MH, Weisinger RS, Wright RD (1982) Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res 236:210–215

    PubMed  CAS  Google Scholar 

  • McKinley MJ, Denton DA, Park RG, Weisinger RS (1986) Ablation of subfornical organ does not prevent angiotensin-induced water drinking in sheep. Am J Physiol 250:R1052–R1059

    PubMed  CAS  Google Scholar 

  • McKinley MJ, Congiu M, Miselis RR, Oldfield BJ, Pennington G (1988) The lamina terminalis and osmotically stimulated vasopressin secretion. In: Yoshida S, Share L (eds) Recent progress in posterior pituitary hormones. Elsevier, Amsterdam, pp 117–126

    Google Scholar 

  • McRae-Degueurce A, Bellin SI, Landas SK, Johnson AK (1986) Fetal noradrenergic transplants into amino-depleted basal forebrain nuclei restore drinking to angiotensin. Brain Res 374:162–166

    PubMed  CAS  Google Scholar 

  • McRae-Degueurce A, Cunningham JT, Bellin S, Landas S, Wilkin L, Johnson AK (1987) Fetal noradrenergic cell suspensions transplanted into amine-depleted nuclei of adult rats. Ann NY Acad Sci 495:757–759

    Google Scholar 

  • Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic local- ization of angiotensin II receptors in rat brain. Proc Natl Acad Sci USA 81:1575–1579

    PubMed  CAS  Google Scholar 

  • Milner TA, Joh TH, Miller RJ, Pickel VM (1984) Substance P, neurotensin, enkephalin and catecholamine-synthesizing enzymes: light microscopic localizations compared with autoradio-graphic label in solitary efferents to the rat parabrachial region. J Comp Neurol 226:434–447

    PubMed  CAS  Google Scholar 

  • Miselis RR (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230:1–23

    PubMed  CAS  Google Scholar 

  • Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205:1022–1025

    PubMed  CAS  Google Scholar 

  • Miselis RR, Hyde TM, Shapiro EE (1986) Disturbances in water balance controls following lesions to the area postrema and adjacent solitary nucleus. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum, New York, pp 287–297

    Google Scholar 

  • Moore SD, Guyenet PG (1983) Effect of blood pressure and clonidine on the activity of A2 noradrenergic neurons. Soc Neurosci Abstr 9:549

    Google Scholar 

  • Moore-Gillon MJ (1980) Effects of vagotomy on drinking in the rat. J Physiol 308:417–426

    PubMed  CAS  Google Scholar 

  • Moore-Gillon MJ, Fitzsimons JT (1982) Pulmonary vein-atrial junction stretch receptors and the inhibition of drinking. Am J Physiol 11:R452–R457

    Google Scholar 

  • Nazarali AJ, Gutkind JS, Saavedra JM (1987) Regulation of angiotensin II binding sites in the subfornical organ and other rat brain nuclei after water deprivation. Cell Mol Neurobiol 7:447–455

    PubMed  CAS  Google Scholar 

  • Nelson DO, Johnson AK (1985) Subfornical organ projections to nucleus medianus: electrophysiological evidence for angiotensin II synapses. Fed Proc 44:1010

    Google Scholar 

  • Nicolaidis S, Ishibaski S, Gueguen B, Thornton SW, Beaurepaire R (1983) lontophoretic investigation of identified SFO angiotensins in responsive neurons firing in relation to blood pressure changes. Brain Res Bull 10:357–363

    PubMed  CAS  Google Scholar 

  • Niijima A (1969) Afferent discharges from osmoreceptors in the liver of the guinea pig. Science 166:1519–1520

    PubMed  CAS  Google Scholar 

  • Ohman LE, Johnson AK (1986) Lesions in lateral parabrachial nucleus enhance drinking to angiotensin II and isoproterenol. Am J Physiol 251:R504–R509

    PubMed  CAS  Google Scholar 

  • Ohman LE, Johnson AK (1987) Brainstem mechanisms and the inhibition of drinking. Fed Proc 46:1434

    Google Scholar 

  • Ohman LE, Johnson AK (1989) Brain stem mechanisms and the inhibition of angiotensin-induced drinking. Am J Physiol 256:R264–R269

    PubMed  CAS  Google Scholar 

  • Olsson K (1969) Studies on central regulation of secretion and antidiuretic hormone (ADH) in the goat. Acta Physiol Scand 77:465–474

    PubMed  CAS  Google Scholar 

  • Panneton WM, Loewy AD (1980) Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191:239–244

    PubMed  CAS  Google Scholar 

  • Peck JW, Blass EM (1975) Localization of thirst and antidiuretic osmoreceptors by intracranial injection in rats. Am J Physiol 228:1501–1509

    PubMed  CAS  Google Scholar 

  • Peck JW, Novin D (1971) Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area. J Comp Physiol Psychol 74:134–147

    PubMed  CAS  Google Scholar 

  • Peters G, Fitzsimons JT, Peters-Haefeli L (eds) (1975) Control mechanisms of drinking. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Plunkett LM, Shigematsu K, Kurihara M, Saavedra JM (1987) Localization of angiotensin II receptors along the anteroventral third ventricle area of the rat brain. Brain Res 405:205–212

    PubMed  CAS  Google Scholar 

  • Quintin L, Gillon J-Y, Ghignone M, Renaud B, Pujol J-F (1987) Baroreceptor-linked variations of catecholamine metabolism in the caudal ventrolateral medulla: an in vivo electrochemical study. Brain Res 425:319–326

    PubMed  CAS  Google Scholar 

  • Rettig R, Johnson AK (1986) Aortic baroreceptor deafferentation diminishes saline-induced drinking in rats. Brain Res 370:29–37

    PubMed  CAS  Google Scholar 

  • Rettig R, Ganten D, Johnson AK (1981) Isoproterenol-induced thirst: renal and extrarenal mechanisms. Am J Physiol 241:R152–R157

    PubMed  CAS  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    PubMed  CAS  Google Scholar 

  • Robinson MM (1987) An increase in mean arterial pressure (MAP) by IV infusion of phenylephrine (PE) inhibits the drinking response to SC injections of hypertonic saline in the rat. Soc Neurosci Abstr 13:1171

    Google Scholar 

  • Robinson MM, Evered MD (1987) Pressor action of intravenous angiotensin II reduces drinking response in rats. Am J Physiol 252:R754–R759

    PubMed  CAS  Google Scholar 

  • Rogers RC, Novin D, Butcher LL (1979) Electrophysiological and neuroanatomical studies of hepatic portal osmo-and sodium-receptive afferent projections with in the brain. J Auton Nery Syst 1:183–202

    CAS  Google Scholar 

  • Rolls BJ, Rolls ET (1982) Thirst. Cambridge University Press, Cambridge

    Google Scholar 

  • Ross EJ, Christie SBM (1969) Hypernatremia. Medicine 48:441–473

    PubMed  CAS  Google Scholar 

  • Roth GI, Yamamoto WS (1969) The microcirculation of the area postrema in the rat. J Comp Neurol 133:329–340

    Google Scholar 

  • Rowland N (1980) Impaired drinking to angiotensin II after subdiaphragmatic vagotomy in rats. Physiol Behav 24(6):1177–1180

    PubMed  CAS  Google Scholar 

  • Saavedra JM (1987) Regulation of atrial natriuretic peptide receptors in the rat brain. Cell Mol Neurobiol 7:151–153

    CAS  Google Scholar 

  • Saper CB, Reis DJ, Joh T (1983) Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neurosci Lett 42:285–191

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–291

    Google Scholar 

  • Schelling P, Ganten U, Sponer G, Unger T, Ganten D (1980) Components of the renin-angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31:297–308

    PubMed  CAS  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    PubMed  CAS  Google Scholar 

  • Shrager EE (1981) The contribution of periventricular structures of the lamina terminalis to the control of thirst. Doctoral dissertation. University of Iowa, Iowa City

    Google Scholar 

  • Shrager EE, Johnson AK (1978) Ablation of periventricular tissue surrounding the anteroventral third ventricle (AV3V) blocks drinking to cavai ligation but not renin release. Soc Neurosci Abstr 4:180

    Google Scholar 

  • Shrager EE, Johnson AK (1980) Contributions of periventricular structures of the rostral third ventricle to the maintenance of drinking responses to humoral dipsogens and body fluid homeostasis. Soc Neurosci Abstr 6:128

    Google Scholar 

  • Shrager EE, Osborne MJ, Johnson AK, Epstein AN (1975) Entry of angiotensin into cerebral ventricles and circumventricular structures. In: Davies DS, Reid JL (eds) Central action of drugs in blood pressure regulation. University Park Press, Baltimore, pp 65–67

    Google Scholar 

  • Sibbald JR, Hubbard HJ, Sirett (1988) Responses from osmosensitive neurons of the rat subfornical organ in vitro. Brain Res 461:205–214

    PubMed  CAS  Google Scholar 

  • Simansky KJ, Smith GP (1983) Acute abdominal vagotomy reduces drinking to peripheral but not central angiotensin II. Peptides 4:159–163

    PubMed  CAS  Google Scholar 

  • Simmonds MA, Uretsky NJ (1970) Central effects of 6-hydroxydopamine on the body temperature of the rat. Br J Pharmacol 40:630–638

    PubMed  CAS  Google Scholar 

  • Simpson JB (1981) The circumventricular organs and the central actions of angiotensin. Neuroendocrinology 32:248–256

    PubMed  CAS  Google Scholar 

  • Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicited by angiotensin II. Science 181:1172–1175

    PubMed  CAS  Google Scholar 

  • Simpson JB, Epstein AN, Camardo Jr JS (1978) Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J Comp Physiol Psychol 92:581–601

    PubMed  CAS  Google Scholar 

  • Skofitsch G, Jacobowitz DM (1988) Atrial natriuretic peptide in the central nervous system of the rat. Cell Mol Neurobiol 8:339–391

    CAS  Google Scholar 

  • Smith GP (1986) Peripheral mechanisms for the maintenance and termination of drinking in the rat. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum, New York, pp 265–277

    Google Scholar 

  • Snyder RL Jr, Sutin J (1961) Effect of lesions of the medulla oblongata on electrolyte and water metabolism in the rat. Exp Neurol 4:424–435

    PubMed  Google Scholar 

  • Stein JM, Lind RW, Johnson AK (1987) Central serotonergic influences on renal electrolyte and water excretion. Neuropharmacol 26:1685–1692

    CAS  Google Scholar 

  • Stricker EM (1966) Extracellular fluid volume and thirst. Am J Physiol 211:232–238

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Keil LC, Sells G, Kirby A, Chee O, Severs WB (1983) Cerebroventricular sites for enkephalin inhibition of the central actions of angiotensin. Am J Physiol 244:R522–R529

    PubMed  CAS  Google Scholar 

  • Swanson LW, Mogenson GJ (1983) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res Rev 3:1–34

    Google Scholar 

  • Tanaka J, Saito H, Kaba H, Seto K (1987) Subfornical organ neurons act to enhance the activity of paraventricular vasopressin neurons in response to intravenous angiotensin II. Neurosci Res 4:424–427

    PubMed  CAS  Google Scholar 

  • Ter Horst GJ, deBoer P, Luiten PGM, Willigan JD (1989) Ascending projections from the solitary tract nucleus to the hypothalamus. A phaseolus vulgaris lectin tracing study in the rat. Neuroscience 31:785–797

    PubMed  Google Scholar 

  • Thornton SN, Jevlin A, de Beaurepaire R, Nicolaidis S (1985) Iontophoretic application of angiotensin II, vasopressin and oxytocin in the region of the anterior hypothalamus in the rat. Brain Res Bull 14:211–215

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Keil LC (1987) Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am J Physiol 253:R108–R210

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Brown CJ, Keil LC, Ramsay DJ (1980) Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am J Physiol 238:R333–R339

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Keil LC, Ramsay DJ (1982a) Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110:1837–1839

    CAS  Google Scholar 

  • Thrasher TN, Simpson JB, Ramsay DJ (1982b) Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology 35:68–72

    CAS  Google Scholar 

  • Tordoff MG, Schulkin J, Friedman MI (1986) Hepatic contribution to satiation of salt appetite in rats. Am J Physiol 251:R1095–R1102

    PubMed  CAS  Google Scholar 

  • Tribollet E, Barberris C, Jard S, Dubois-Dauphin M, Dreifuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res 442:105–118

    PubMed  CAS  Google Scholar 

  • Tuttle RS, McCleary M (1975) Mesenteric baroreceptors. Am J Physiol 229:1514–1519

    PubMed  CAS  Google Scholar 

  • Van der Kooy D, Koda LY (1983) Organization of the projections of a circumventricular organ: the area postrema in the rat. J Comp Neurol 219:328–338

    PubMed  Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc 135B:25–106

    Google Scholar 

  • Volicer L, Loew CG (1971) Penetration of angiotensin II into the brain. Neuropharmacology 10:631–636

    PubMed  CAS  Google Scholar 

  • Watson WE (1985) The effect of removing area postrema on the sodium and potassium balances and consumptions in the rat. Brain Res 359:224–232

    PubMed  CAS  Google Scholar 

  • Wettendorf H (1901) Modifications du sang soud l’influence de la privations d’eau: contribution à l’étude de la soif. Tray Lab Physiol 4:353–484

    Google Scholar 

  • Wilkin LD, Patel KP, Schmid PG, Johnson AK (1987) Increased norepinephrine turnover in median preoptic nucleus following reduced extracellular fluid volume. Brain Res 423:369–372

    PubMed  CAS  Google Scholar 

  • Wise BL, Ganong WF (1960a) The effect of ablation of the area postrema on water and electrolyte metabolism in dogs. Acta Neuroveg (Vienna) 22:14–32

    CAS  Google Scholar 

  • Wise BL, Ganong WF (1960b) Effect of brain stem stimulation on renal function. Am J Physiol 198:1291–1295

    CAS  Google Scholar 

  • Witt DM, Keller AD, Batsel HL, Lynch JR (1952) Absence of thirst and resultant syndrome associated with anterior hypothalamectomy in the dog. Am J Physiol 171:780

    Google Scholar 

  • Wolf AV (1950) Osmometric analysis of thirst in man and dog. Am J Physiol 161:75–86

    PubMed  CAS  Google Scholar 

  • Wolf AV (1958) Thirst: physiology of the urge to drink and problems of water lack. Thomas, Springfield

    Google Scholar 

  • Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R (1979) Modulating actions of norepinephrine in the central nervous system. Fed Proc 38:2109–2116

    PubMed  CAS  Google Scholar 

  • Wyss JM, Donovan MK (1984) A direct projection from the kidney to the brainstem. Brain Res 298:130–134

    PubMed  CAS  Google Scholar 

  • Zardetto-Smith AM, Gray TS (1987) A direct neural projection from the nucleus of the solitary tract to the subfornical organ in the rat. Neurosci Lett 80:163–166

    PubMed  CAS  Google Scholar 

  • Zimmerman MB, Blaine EH, Stricker EM (1981) Water intake in hypovolemic sheep: effects of crushing the left atrial appendage. Science 211:489–490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, A.K., Edwards, G.L. (1990). The Neuroendocrinology of Thirst: Afferent Signaling and Mechanisms of Central Integration. In: Ganten, D., Pfaff, D. (eds) Behavioral Aspects of Neuroendocrinology. Current Topics in Neuroendocrinology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75837-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75837-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75839-3

  • Online ISBN: 978-3-642-75837-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics