Skip to main content

Oxytocin as Part of Stress Responses

  • Conference paper
Behavioral Aspects of Neuroendocrinology

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 10))

Abstract

The nonapeptide oxytocin (OT) is produced primarily in magnocellular elements of the hypothalamic paraventricular and supraoptic nuclei, and in addition to its release from axon terminals in the neural lobe, convincing evidence exists for delivery and release into other brain sites. The hypothalamic and extrahypothalamic distributions of OT-containing neural elements (Sawchenko and Swanson 1985; Weindl and Sofroniew 1985) formed the anatomical basis for the examination of many behavioral actions of the peptide related to its primary hormonal effects in the periphery (e.g., maternal behavior as a central nervous system correlate of the milk-ejection reflex; see Pedersen et al., this volume). Additional actions of OT within the brain were predicted (see Van Wimersma Greidanus and Van Ree, this volume) on the basis of its structural homology with the other nonapeptide of magnocellular origin, vasopressin (AVP). An earlier volume in this series (Ganten and Pfaff 1986) has been devoted exclusively to the classic aspects of OT physiology, and therefore this review will not reiterate in great detail the previous descriptions of the biosynthesis and processing of OT (Ivell 1986; Burbach 1986), regulation of release (Forsling 1986), general behavioral aspects (Kovacs 1986), or the hormonal actions of the nonapeptide in the mammary gland (Robinson 1986) or the uterus and ovary (Wathes et al. 1986). Instead, this review focuses on the possible role played by OT as a neuroendocrine peptide controlling the anterior pituitary response to stress. Evidence is reviewed which suggests a physiological role for the nonapeptide in the hypothalamic control of the release of two adenohypophysial hormones which are part of the stress response, adrenocorticotropin (ACTH) and prolactin (PRL), and the controversial role that OT might play in the stress-induced inhibition of gonadotropin secretion is detailed.

This research was supported by funding provided to the senior author by the National Institutes of Health, the American Heart Association, and the American Cancer Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Engler D, Molitch ME, Bollinger-Gruber J, Reichlin S (1985) Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Endocrinology 116: 1383–1390

    PubMed  CAS  Google Scholar 

  • Almeida OFX, Nikolarakis KE, Herz A (1988) Evidence for the involvement of endogenous opioids in the inhibition of luteinizing hormone by corticotropin releasing factor. Endocrinology 122: 1034–1041

    PubMed  CAS  Google Scholar 

  • Amico JA, Seif SM, Robinson AG (1981) Elevation of oxytocin and the oxytocin-associated neurophysin in the plasma of normal women during mid-cycle. J Clin Endocrinol Metab 53: 1229–1232

    PubMed  CAS  Google Scholar 

  • Amico JA, Richardson DW, Winters SJ (1989) The effect of oxytoxin administration upon pulsatile secretion of luteinizing hormone in humans. Acta Endocrinol (Copenh) 121: 41–45

    CAS  Google Scholar 

  • Antoni FA (1986) Oxytoxin receptors in the rat adenohypophysis: evidence from radioligand binding studies. Endocrinology 119: 2393–2395

    PubMed  CAS  Google Scholar 

  • Antoni FA, Holmes MC, Jones MT (1983) Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4: 411–415

    PubMed  CAS  Google Scholar 

  • Antoni F, Holmes MC, Makara GB, Karteszi M, Laszlo FA (1984) Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin ( ACTH) release are mediated by a novel type of receptor. Peptides 5: 519–522

    PubMed  CAS  Google Scholar 

  • Arey B, Freeman ME (1989) Hypothalamic factors involved in the endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 124: 878–884

    PubMed  CAS  Google Scholar 

  • Baertschi AJ, Friedli M (1985) A novel type of vasopressin receptor on anterior pituitary corticotrophs. Endocrinology 116: 499–502

    PubMed  CAS  Google Scholar 

  • Baertschi AJ, Vallet P, Baumann JB, Girard J (1980) Neural lobe of pituitary modulates corticotropin release in the rat. Endocrinology 106: 878–882

    PubMed  CAS  Google Scholar 

  • Bardrum B, Ottesen B, Fuchs A-R (1987) Preferential release of oxytocin in response to vasoactive intestinal polypeptide in rats. Life Sci 40: 169–173

    PubMed  CAS  Google Scholar 

  • Bargman W (1949) Ãœber die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch Mikrosk Anat 34: 610–634

    Google Scholar 

  • Ben-Jonathan N (1985) Dopamine: a prolactin inhibiting hormone. Endocr Rev 6: 564–589

    PubMed  CAS  Google Scholar 

  • Beny JL, Baertschi AJ (1980) Oxytocin: major corticotropin-releasing factor secreted from diabetes insipidus rat posterior pituitary in vitro. Neuroendocrinology 31: 261–264

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Chapman C, Leng G (1985) Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro. Neuroendocrinology 41: 142–148

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Leng G, Lincoln DW, Russell JA (1988) Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment. J Physiol (Lond) 396: 297–317

    CAS  Google Scholar 

  • Blake C (1975) Effect of stress on pulsatile luteinizing hormone release in ovariectomized rats. Proc Soc Exp Biol Med 148: 813–815

    PubMed  CAS  Google Scholar 

  • Bridges TE, Hillhouse EW, Jones MT (1976) The effect of dopamine on neurohypophysial hormone release in vivo and from the rat neural lobe and hypothalamus in vitro. J Physiol (Lond) 260: 647–666

    CAS  Google Scholar 

  • Brinton RE, Wamsley JK, Gee KW, Wan YP, Yamamura HI (1984) (3H)Oxytocin binding sites in the rat brain demonstrated by quantitative light microscopic autoradiography. Eur J Pharmacol 102:365–367

    Google Scholar 

  • Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207: 373–378

    PubMed  CAS  Google Scholar 

  • Bruhn TO, Sutton SW, Plotsky PM, Vale WW (1986) Central administration of corticotropinreleasing factor modulates oxytocin secretion in the rat. Endocrinology 119: 1558–1563

    PubMed  CAS  Google Scholar 

  • Buijs RM, Vanherrikhuize JJ (1982) Vasopressin and oxytocin release in the brain: a synaptic event. Brain Res 252: 71–76

    PubMed  CAS  Google Scholar 

  • Burbach JPH (1986) Proteolytic conversion of oxytocin, vasopressin and related peptides in brain. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 55–90 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Carter DA, Lightman SL (1987) Oxytocin responses to stress in lactating and hyperprolactinemic rats. Neuroendocrinology 46: 532–537

    PubMed  CAS  Google Scholar 

  • Clarke G, Merrick LP (1985) Electrophysiological studies of magnocellular neurons. In: Ganten D, Pfaff D (eds) Neurobiology of vasopressin. Springer, Berlin Heidelberg New York, pp 17–59 (Current topics in neuroendocrinology, vol 4 )

    Google Scholar 

  • Clarke G, Lincoln DW, Merrick LP (1979) Dopaminergic control of oxytocin release in lactating rats. J Endocrinol 83: 409–420

    PubMed  CAS  Google Scholar 

  • Dawood MY, Ylikorkala O, Trivedi D, Gupta R (1980) Oxytocin levels and disappearance rate and plasma follicle-stimulating hormone and luteinizing hormone after oxytocin infusion in men. J Clin Endocrinol Metab 50: 397–400

    PubMed  CAS  Google Scholar 

  • Dawood MY, Khan-Dawood FS, Wahi RS, Fuchs F (1981) Oxytocin release and plasma anterior pituitary and gonadal hormones in women during lactation. J Clin Endocrinol Metab 52: 678–682

    PubMed  CAS  Google Scholar 

  • Dayanithi G, Cazalis M, Nordmann JJ (1987) Relaxin affects the release of oxytocin and vasopressin from neurohypophysis. Nature 325: 813–816

    PubMed  CAS  Google Scholar 

  • Ditlove J, Faiman C (1970) Failure of FSH release by oxytocin in man. J Clin Endocrinol Metab 30: 672–674

    PubMed  CAS  Google Scholar 

  • Eckland DJA, Todd K, Lightman SL (1988) Immunoreactive vasopressin and oxytocin in hypothalamo-hypophysial portal blood of the Brattleboro and Long-Evans rat: effect of adrenalectomy and dexamethasone. J Endocrinol 117: 27–34

    PubMed  CAS  Google Scholar 

  • Enjalbert A, Aranciba S, Ruberg M, Priam M, Bluet-Pajot MT, Rotsztejn WH, Kordon C (1980) Stimulation of in vitro prolactin release by vasoactive intestinal peptide. Neuroendocrinology 31: 200–204

    PubMed  CAS  Google Scholar 

  • Falke N (1988) Dynorphin (1— 8) inhibits stimulated release of oxytocin but not arginine vasopressin from isolated neurosecretory endings of the rat neurohypophysis. Neuropeptides 11: 163–167

    PubMed  CAS  Google Scholar 

  • Ferrier BM, McClorry SA, Cochrane AW (1983) Specific binding of (3H)oxytocin in the female rat brain. Can J Physiol Pharmacol 61: 989–995

    PubMed  CAS  Google Scholar 

  • Fink G, Robinson ICAF, Tannahill LA (1988) Effects of adrenalectomy and glucocorticoids on the peptides CRF-41, AVP and oxytocin in rat hypophysial portal blood. J Physiol (Lond) 401: 329–345

    CAS  Google Scholar 

  • Forsling ML (1986) Regulation of oxytocin release. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 19–53 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Fox SR, Smith MS (1984) The suppression of pulsatile luteinizing hormone secretion during lactation in the rat. Endocrinology 115: 2045–2051

    PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J Physiol (Lond) 352: 447–466

    CAS  Google Scholar 

  • Fuchs A-R (1985) Oxytocin in animal parturition. In: Oxytocin: clinical and laboratory studies. Elsevier, Amsterdam

    Google Scholar 

  • Fulton RJ, Blakely DC, Knowles PP, Uhr JW, Thorpe PE, Vitetta ES (1986) Pharmacokinetics of tumor-reactive immunotoxins in tumor bearing mice: effects of antibody valency and deglycosylation of the ricin A chain on clearance and tumor localization. Cancer Res 48: 2618–2624

    Google Scholar 

  • Fulton RJ, Mogg R, Sherman D, Paull WK, Samson WK (1989) Use of immunotoxins to create novel neuropeptide-deficient rats. FASEB J 3: A480

    Google Scholar 

  • Gambacciani M, Yen SSC, Rasmussen DD (1986a) GnRH release from the mediobasal hypothalamus. In vitro regulation by oxytocin. Neuroendocrinology 42: 181–183

    PubMed  CAS  Google Scholar 

  • Gambacciani M, Yen SSC, Rasmussen DD (1986b) GnRH release from mediobasal hypothalamus: in vitro inhibition by corticotropin-releasing factor. Neuroendocrinology 43: 533–536

    PubMed  CAS  Google Scholar 

  • Ganten D, Pfaff D (1986) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Gibbs DM (1984a) High concentrations of oxytocin in hypophysial portal plasma. Endocrinology 114: 1216–1218

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1984b) Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci 35: 487–491

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985a) Immunoneutralization of oxytocin attenuates stress-induced corticotropin secretion in the rat. Regul Pept 12: 273–277

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985b) Inhibition of corticotropin release during hypothermia: the role of corticotropin releasing factor, vasopressin, and oxytocin. Endocrinology 116: 723–727

    PubMed  CAS  Google Scholar 

  • Gibbs DM, Vale W, Rivier J, Yen SSC (1984) Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin. Life Sci 34: 2245–2249

    PubMed  CAS  Google Scholar 

  • Grosvenor CE, Mena F (1982) Regulating mechanisms for oxytocin and prolactin secretion during lactation. In: Muller EE, MacLeod RM (eds) Neuroendocrine perspectives. Elsevier, Amsterdam, pp 69–110

    Google Scholar 

  • Horn AM, Fraser HM, Fink G (1983) Effects of antiserum to thyrotropin releasing hormone on concentrations of plasma prolactin, thyrotropin and luteinizing hormone in the pro-oestrous rat. J Endocrinol 104: 205–209

    Google Scholar 

  • Horn AM, Robinson ICAF, Fink G (1985) Oxytocin and vasopressin in rat hypophysical portal blood: experimental studies in normal and Brattleboro rats. J Endocrinol 104: 211–224

    PubMed  CAS  Google Scholar 

  • Hyde JF, Ben-Jonathan N (1988) Characterization of prolactin-releasing factor in the rat posterior pituitary. Endocrinology 122: 2533–2539

    PubMed  CAS  Google Scholar 

  • Hyde JF, Ben-Jonathan N (1989) The posterior pituitary contains a potent prolactin-releasing factor: in vivo studies. Endocrinology 125: 736–741

    PubMed  CAS  Google Scholar 

  • Ivell R (1986) Biosynthesis of oxytocin in the brain and peripheral organs. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 1–18 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Johnston CA, Negro Vilar A (1988) Role of oxytocin on prolactin secretion during proestrus and in different physiological and pharmacological paradigms. Endocrinology 122: 341–350

    PubMed  CAS  Google Scholar 

  • Jones SA, Summerlee AJS (1986) Relaxin acts centrally to inhibit oxytocin release during parturition: an effect that is reversed by naloxone. J Endocrinol 111: 99–102

    PubMed  CAS  Google Scholar 

  • Jones SA, Summerlee AJS (1987) Effects of chronic infusion of porcine relaxin on oxytocin release in lactating rats. J Endocrinol 144: 241–246

    Google Scholar 

  • Kaji H, Chihara K, Abe H, Kita T, Kashio Y, Okimura Y, Fujita T (1985) Effect of passive immunoneutralization with antisera to vasoactive intestinal polypeptide and peptide histidine isoleucine amide on 5-hydroxy-1-tryptophan-induced prolactin release in rats. Endocrinology 117: 1914–1919

    PubMed  CAS  Google Scholar 

  • Keil LC, Rosella-Dampman LM, Emmert S, Chee O, Summy-Long JY (1983) Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin. Brain Res 297: 329–336

    Google Scholar 

  • Kovacs GL (1986) Oxytocin and behavior. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 91–128 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schutz G (1983) Deduced amino acid sequence from bovine oxytocin-neurophysin I cDNA. Nature 302: 342–344

    PubMed  CAS  Google Scholar 

  • Lang RE, Rascher W, Heil J, Unger TH, Wiedemann G, Gangen D (1981) Angiotensin stimulates oxytocin release. Life Sci 29: 1425–1428

    PubMed  CAS  Google Scholar 

  • Lang RE, Heil JWE, Ganten D, Hermann K, Unger T, Rascher W (1983) Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology 37: 314–316

    PubMed  CAS  Google Scholar 

  • Legros JJ, Franchimont P (1968) Serum-gonadotropins after oxytocin in man. Lancet 2: 735

    PubMed  CAS  Google Scholar 

  • Lincoln DW, Russell JA (1985) The electrophysiology of magnocellular oxytocin neurons. In: Amico JA, Robinson AG (eds) Oxytocin: clinical and laboratory studies. Elsevier, Amsterdam, pp 53–76

    Google Scholar 

  • Lincoln DW, Russell JA (1986) Oxytocin and vasopressin secretion: new perspectives. In: Fink G, Hammar AJ, Mc Kerns KW (eds) Neuroendocrine molecular biology. Plenum, New York, pp 183–209

    Google Scholar 

  • Lumpkin MD, Samson WK, McCann SM (1983) Hypothalamic and pituitary sites of action of oxytocin to alter prolactin secretion in the rat. Endocrinology 112: 1711–1717

    PubMed  CAS  Google Scholar 

  • Lumpkin MD, Samson WK, McCann SM (1987) Arginine vasopressin releases thyroid stimulating hormone in vitro and in vivo. Science 235: 1070–1073

    PubMed  CAS  Google Scholar 

  • MacLusky NJ, Naftolin F, Leranth C (1988) Immunocytochemical evidence for direct synaptic connections between corticotropin-releasing factor (CRF) and gonadotropin-releasing hormone ( GnRH)-containing neurons in the preoptic area of the rat. Brain Res 439: 391–395

    PubMed  CAS  Google Scholar 

  • Melin P, Trojnar J, Johansson B, Vilhardt H, Akerlund M (1986) Synthetic antagonists of the myometrial response to vasopressin and oxytocin. J Endocrinol 111: 125–131

    PubMed  CAS  Google Scholar 

  • Mena F, Clapp C, Martinez-Escalera G, Pacheco P, Grosvenor CE (1985) Integrative regulation of milk ejection. In: Amico JA, Robinson AG (eds) Oxytocin: clinical and laboratory studies. Elsevier, Amsterdam, pp 179–199

    Google Scholar 

  • Mitchell MD, Haynes PJ, Anderson ABM, Turnbill AC (1980) Oxytocin in human ovulation. Lancet 2: 704

    PubMed  CAS  Google Scholar 

  • Mizuno H, Talwalker PK, Meites J (1967) Central inhibition by serotonin of reflex release of oxytocin in response to suckling stimulus in the rat. Neuroendocrinology 2: 222–231

    CAS  Google Scholar 

  • Mogg RJ, Bianchi R, Melin P, Samson WK (1988) The role of oxytocin in prolactin release during pharmacological and physiological dopamine withdrawal. Abstract 181, Endocrine Society, New Orleans

    Google Scholar 

  • Mogg RJ, Samson WK (1990) Interactions of dopaminergic and peptidergic factors in the control of prolactin release. Endocrinology 126: 728–735

    PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1975) Rôle de la noradrénaline et de l’acétyl choline dans la libération d’oxy- tocine induite par des stimulations vaginale vagale et mammaire. J Physiol (Paris) 70: 315–322

    CAS  Google Scholar 

  • Moos F, Richard P (1979) The inhibitory role of beta-noradrenergic receptors in oxytocin release during suckling. Brain Res 169: 595–599

    PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1983) Serotonergic control of oxytocin release during suckling in the rat: opposite effects in conscious and anaesthetized rats. Neuroendocrinology 36: 300–306

    PubMed  CAS  Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckl ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72

    PubMed  CAS  Google Scholar 

  • Morel G, Chabot JG, Dubois PM (1988) Ultrastructural evidence for oxytocin in the rat anterior pituitary gland. Acta Endocrinol (Copenh) 117: 307–314

    CAS  Google Scholar 

  • Murai I, Ben-Jonathan N (1987) Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin (PRL): evidence for a PRL-releasing factor in the posterior pituitary. Endocrinology 121: 205–211

    PubMed  CAS  Google Scholar 

  • Murai I, Reichlin S, Ben-Jonathan N (1989) The peak phase of the proestrous prolactin surge is blocked by either posterior pituitary lobectomy or antisera to vasoactive intestinal peptide. Endocrinology 124: 1050–1055

    PubMed  CAS  Google Scholar 

  • Neill JD (1980) Neuroendocrine regulation of prolactin secretion. In: Front Neuroendocrinol 6: 129–158

    Google Scholar 

  • Nikolarakis KE, Almeida OFX, Herz A (1986) Corticotropin-releasing factor (CRF) inhibits gonadotropin-releasing hormone ( GnRH) release from superfused rat hypothalami in vitro. Brain Res 377: 388

    PubMed  CAS  Google Scholar 

  • Ono N, Lumpkin MD, Samson WK, McDonald JK, McCann SM (1984) Intrahypothalamic action of corticotropin-releasing factor ( CRF) to inhibit growth hormone and LH release in the rat. Life Sci 35: 1117–1123

    PubMed  CAS  Google Scholar 

  • Page RB (1982) Pituitary blood flow. Am J Physiol 243: E427–442

    PubMed  CAS  Google Scholar 

  • Pandol SJ, Dharmsatthaphorn K, Schoeffield MS, Vale W, Rivier J (1986) Vasoactive intestinal peptide receptor antagonist (4C1-d-Phe6, Leu17) VIP. Am J Physiol 250: G553–557

    PubMed  CAS  Google Scholar 

  • Petersen WE (1944) Lactation. Physiol Rev 24: 340–372

    CAS  Google Scholar 

  • Petraglia F, Sutten S, Vale W, Plotsky P (1987) Corticotropin-releasing factor decreases plasma luteinizing hormone levels in female rats by inhibiting gonadotropin-releasing hormone release into hypophyseal-portal circulation. Endocrinology 120: 1083–1088

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Bruhn TO, Otto S (1985a) Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial portal circulation by corticotropin-releasing factor. Endocrinology 116: 1669–1671

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Bruhn TO, Vale W (1985b) Evidence for multifactor regulation of the adrenocor-ticotropin secretory response to hemodynamic stimuli. Endocrinology 116: 633–639

    PubMed  CAS  Google Scholar 

  • Reisine T, Heisler S, Hook VYH, Axelrod J (1982) Multireceptor-induced release of corticotrophin from anterior pituitary tumor cells. Biochem Biophys Res Commun 108: 1251–1257

    PubMed  CAS  Google Scholar 

  • Rivier C, Vale W (1984) Influence of corticotropin-releasing factor ( CRF) on reproductive functions in the rat. Endocrinology 114: 914–921

    PubMed  CAS  Google Scholar 

  • Rivier C, Vale W (1985) Effect of long-term administration of corticotropin-releasing factor on the pituitary-adrenal and pituitary-gonadal axis in the male rat. J Clin Invest 75: 689–694

    PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Vale W (1986) Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science 231: 607–609

    PubMed  CAS  Google Scholar 

  • Robinson ICAF (1986) Oxytocin and the milk-ejection reflex. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 153–172 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Said SI, Porter JC (1979) Vasoactive intestinal polypeptide: release into the hypophyseal portal blood. Life Sci 24: 227–230

    PubMed  CAS  Google Scholar 

  • Salisbury RL, Krieg RJ, Seibel HR (1980) Effects of arginine vasotocin, oxytocin, and arginine vasopressin on steroid-induced surges of luteinizing hormone and prolaction in ovariectomized rats. Acta Endocrinol (Copenh) 94: 166–173

    CAS  Google Scholar 

  • Samson WK (1988a) The posterior pituitary and water metabolism. In: Griffin JT, Ojeda SR (eds) Textbook of endocrine physiology. Oxford University Press, New York, pp 100–111

    Google Scholar 

  • Samson WK (1988b) Central nervous system actions of atrial natriuretic factor. Brain Res Bull 20: 831–837

    PubMed  CAS  Google Scholar 

  • Samson WK, Freeman ME (1990) Vasoactive intestinal peptide: a neural modulator of endocrine function. In: Johnston C (ed) Brain-gut hormones and reproductive function. Telford, New York, in press

    Google Scholar 

  • Samson WK, Said SI, Snyder G, McCann SM (1980) In vitro stimulation of prolactin release by vasoactive intestinal peptide. Peptides 1: 325–329

    PubMed  CAS  Google Scholar 

  • Samson WK, McDonald JK, Lumpkin MD (1985) Naloxone-induced dissociation of oxytocin and prolactin releases. Neuroendocrinology 40: 68–71

    PubMed  CAS  Google Scholar 

  • Samson WK, Lumpkin MD, McCann SM (1986) Evidence for a physiological role for oxytocin in the control of prolactin secretion. Endocrinology 119: 554–560

    PubMed  CAS  Google Scholar 

  • Samson WK, Aguila MC, Martinovic J, Antunes-Rodrigues J, Norris M (1987) Hypothalamic action of atrial natriuretic factor to inhibit vasopressin secretion. Peptides 8: 449–454

    PubMed  CAS  Google Scholar 

  • Samson WK, Bianchi R, Mogg R (1988) Evidence for a dopaminergic mechanism for the prolactin inhibitory effect of atrial natriuretic factor. Neuroendocrinology 47: 268–271

    PubMed  CAS  Google Scholar 

  • Samson WK, Bianchi R, Mogg RJ, Rivier J, Vale W, Melin P (1989) Oxytocin mediates the hypothalamic action of vasoactive intestinal peptide to stimulate prolactin secretion. Endocrinology 124: 812–819

    PubMed  CAS  Google Scholar 

  • Samson WK, Martin L, Mogg RJ, Futton RJ (1990) A nonoxytocinergic prolactin releasing factor and a nondopaminergic prolactin inhibiting factor in bovine neurointermediate lobe extracts: in vitro and in vivo studies. Endocrinology 126: 1610–1617

    PubMed  CAS  Google Scholar 

  • Sarkar DP (1989a) Immunoneutralization of oxytocin attenuates preovulatory prolactin secretion during proestrus in the rat. Neuroendocrinology 48: 214–216

    Google Scholar 

  • Sarkar DP (1989b) Evidence for prolactin feedback actions on hypothalamic oxytocin, vasoactive intestinal peptide and dopamine secretion. Neuroendocrinology 49: 520–524

    PubMed  CAS  Google Scholar 

  • Sarkar DP, Gibbs DM (1984) Cyclic variation of oxytocin in the blood of pituitary vessels of rats. Neuroendocrinology 39: 481–484

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog Brain Res 60: 19–29

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1985) Relationship of oxytocin pathways to the control of neuroendocrine and autonomic function. In: Amico JA, Robinson AG (eds) Oxytocin: clinical and laboratory studies. Elsevier, Amsterdam, pp 87–103

    Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984) Corticotropin releasing factor: co-expression within distinct subunits of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J Neurosci 4: 1118–11239

    PubMed  CAS  Google Scholar 

  • Scharrer E, Scharrer B (1954) Hormones produced by neurosecretory cells. Recent Prog Horm Res 10:183–240

    CAS  Google Scholar 

  • Schwartz J, Vale W (1988) Dissociation of the adrenocoticortropin secretory responses to corticotropin-releasing factor ( CRF) and vasopressin or oxytocin by using a specific cytotoxic analog of CRF. Endocrinology 122: 1695–1700

    PubMed  CAS  Google Scholar 

  • Seckl JR, Lightman SL (1987) Effect of naloxone on oxytocin and vasopressin release during vaginocervical stimulation in the goat. J Endocrinol 115: 317–322

    PubMed  CAS  Google Scholar 

  • Seckl JR, Lightman SL (1988) Potentiation of lactation-induced oxytocin secretion by intracerebroventricular oxytocin in the conscious goat. J Endocrinol 116: 273–277

    PubMed  CAS  Google Scholar 

  • Seybold V, Miller TW, Lewis PR (1976) Investigation of a dopaminergic mechanism for regulating oxytocin release. J Pharmacol Exp Ther 207: 605–610

    Google Scholar 

  • Silverman AJ (1976) Ultrastructural studies on the localization of neurohyophyseal hormones and their carrier proteins. J Histochem Cytochem 24: 816–827

    PubMed  CAS  Google Scholar 

  • Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183

    PubMed  CAS  Google Scholar 

  • Standaert DG, Needleman P, Saper CB (1986) Organization of atriopeptin-like immunoreactive neurons in the central nervous system of the rat. J Comp Neurol 253: 315–341

    PubMed  CAS  Google Scholar 

  • Summerlee AJS, O’Bryne KT, Paisley AC, Breeze MF, Porter DG (1984) Relaxin affects the central control of oxytocin release. Nature 309: 372–374

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Miller DS, Rosella-Dampman LM, Hartman RD, Emmert SE (1984) A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin. Brain Res 309: 362–366

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6: 269–324

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA (1984) Evidence that oxytocin-secreting neurons are involved in the ultrastructural reorganization of the rat supraoptic nucleus apparent at lactation. Cell Tissue Res 235: 217–219

    PubMed  CAS  Google Scholar 

  • Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C (1983) Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113: 1121–1131

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Vandesande F, Dierickx K (1981) Coexistence of cholecystokinin and oxytocin immunoreactivities in some magnocellular hypothalamo-hypophyseal neurons. Cell Tissue Res 221: 227–231

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Liston DR, Rossier J (1983) Proenkephalin, [met]enkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurons. Proc Natl Acad Sci USA 80: 5139–5143

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K, De May J (1977) The origin of the vasopressinergic and oxytocinergic fibers on the external region of the median eminence of the rat hypophysis. Cell Tiss Res 180: 443–452

    CAS  Google Scholar 

  • Verbalis JG, McCann MJ, McHale CM, Stricker EM (1986) Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea and satiety. Science 23: 1417–1419

    Google Scholar 

  • Vijayan E, Samson WK, McCann SM (1979) Vasocactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone, and prolactin in conscious ovariectomized rats. Endocrinology 104: 53–57

    PubMed  CAS  Google Scholar 

  • Vitetta E, Fulton RJ, May RD, Till M, Uhr JW (1987) Redesigning nature’s poisons to create antitumor reagents. Science 238: 1098–1104

    PubMed  CAS  Google Scholar 

  • Wathes DC, Swann RW, Porter DG, Pickering BT (1986) Oxytocin as an ovarian hormone. In: Ganten D, Pfaff D (eds) Neurobiology of oxytocin. Springer, Berlin Heidelberg New York, pp 129–152 (Current topics in neuroendocrinology, vol 6 )

    Google Scholar 

  • Weindl A, Sofroniew M (1985) Neuroanatomical pathways related to vasopressin. In: Ganten D, Pfaff D (eds) Neurobiology of vasopressin. Springer, Berlin Heidelberg New York, pp 137–196 (Current topics in neuroendocrinology, vol 4 )

    Google Scholar 

  • Weitzman RE, Firemark HM, Glatz TH, Fisher DA (1979) Thyrotropin-releasing hormone stimulates release of arginine vasopressin and oxytocin in vivo. Endocrinology 104: 904–907

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Akaishi T, Negoro H (1979) Effect of extrogen treatment on plasma oxytocin and vasopressin in ovariectomized rats. Endocrinol Jpn 26: 197–200

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samson, W.K., Mogg, R.J. (1990). Oxytocin as Part of Stress Responses. In: Ganten, D., Pfaff, D. (eds) Behavioral Aspects of Neuroendocrinology. Current Topics in Neuroendocrinology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75837-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75837-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75839-3

  • Online ISBN: 978-3-642-75837-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics