Limestone-Marl Cycles (Periodites): Diagnosis, Significance, Causes — a Review

  • G. Einsele


Pelagic to hemipelagic limestone-marl rhythms are described as minor cycles with time information (periodites). They develop and can be recognized in the field only, if (a) the original sediment had a carbonate/clay ratio on the order of 4 and, under oxygenated conditions, if (b) the thickness of somewhat alternating beds was sufficient (5 to 10 cm) to prevent complete mixing by bioturbation. Simple models demonstrate the effect of fluctuating productivity and dissolution of (chiefly biogenic) carbonate as well as its dilution by “clay”. However, small primary differences in carbonate content or texture of alternating beds may be enhanced by diagenesis, including pressure solution, which strongly affect the final field aspect and the faunal content of the rhythmic sequence. Yet there are several criteria to prove the primary origin of such successions.

The exact correlation and timing of limestone-marl sequences is difficult in many cases, but it can hardly be doubted that the time periods of Quaternary and older carbonate cycles coincide in their order of magnitude (20,000 to 100,000 years). This is also true for their sedimentation rate (0.5 to 3 cm/1000 years) which is controlled by pelagic carbonate production.

Limestone-marl rhythms reflect a depositional area below storm-wave base. In the case of continental margins or epicontinental seas, accumulation approximately balances subsidence, and alternating beds appear to be generated mainly by dilution. In the deep sea, cyclic carbonate deposition is found on rises and plateaus, where it is chiefly controlled by dissolution in conjunction with a fluctuating CCD and/or changing bottom currents.

Rhythms of this type occur world-wide since Paleozoic time. They are probably caused by climatic variations, but simultaneous (generally small) sea level fluctuations may also play a part. During periods of widely extented and intensive plant growth on land, the CO2, content of surface waters may have been diminished for some time, whereas the river supply of dissolved old carbonate was increased. Both processes tend to promote the production and preservation of carbonate in shallow and deeper water.


Black Shale Carbonate Production Carbonate Cycle Pressure Solution Nodular Limestone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABU-MAARUF, M. (1975): Feingliederung und Korrelation der Mergel-kalk-Fazies des Unter-Campan von Misburg, Höver und Woltorf im ostniedersächsischen Becken.- Ber. Naturhist. Ges. 119: 127–204, Hannover.Google Scholar
  2. BE, A.W.H., DAMUTH, J.E., LOTT, L., FREE, R. (1976): Late Quaternary climatic record in western equatorial Atlantic sediment. In: Cline, R.M., Hays, J.D. (eds.), Investigation of Late Quaternary paleoceanography and paleoclimatology. Geol. Soc. Amer., Memoir 145: 165–200.Google Scholar
  3. BEAUDOIN, B. (1977): Méthodes d’analyse sédimentaire et reconstruction du bassin: le Jurassique terminal-Berriasien des chaînes subalpines méridionales.- Thèse, Univ. Caen, Sciences de la terre et de l’aménagement régional, 339 + 136 p.Google Scholar
  4. BEAUDOIN, B., BIE, J., CONARD, M., GUY, B., le DEUFF, D. (1974): Essai d’analyse des rythmes dans des formations marno-calcaires alternantes.- Bull. Soc. géol. France (7), XVI: 634–642.Google Scholar
  5. BECHSTADT, T. (1973): Zyklotheme im hangenden Wettersteinkalk von Bleiberg-Kreuth (Kärnten, Österreich). Festschrift HEISSEL, Veröff. Univ. Innsbruck, Bd. 86: 25–55.Google Scholar
  6. BERGER, W.H. (1979): Preservation of foraminifera. In: SEPM Short Course No. 6, Houston 1979 ( Foraminiferal Ecology and Paleocology), Soc. Econ. Paleontol. Mineralog.: 105–155.Google Scholar
  7. BERGER, W.H. (1979): Impact of Deep-Sea Drilling on paleoceanography. In: Talwani, M., HAY, W. & Ryan, W.B.F. (Mauric Ewing Series 3, Deep drilling results in the Atlantic Ocean: Continental margins and paleoenvironment, p., Am. Geophys. Union, Washington.Google Scholar
  8. BERGER, W.H. & HEATH, R.G. (1968): Vertical mixing in pelagic sediments.- J. Marine Res., 26: 134–143.Google Scholar
  9. BERGER, W.H., JOHNSON, R.F. & KILLINGLEY, J.S. (1977): “Unmixing” of the deep-sea record and the deglacial meltwater spike.- Nature, 269, No. 5630: 661–663.CrossRefGoogle Scholar
  10. BERGER, W.H. & MAYER, C.A. (1978): Deep-sea carbonates: Acoustic reflectors and lysocline fluctuations.- Geology 6: 11–15.Google Scholar
  11. BERNER, R.A. (1971): Principles of Chemical Sedimentology.- McGraw-Hill, New York, 240 p.Google Scholar
  12. BOER, P.L. de (1980): The paleo-environment of mid-Cretaceous black shale deposition as deduced from stable carbon isotopes. Comparative Sedimentology Research Group, Institute of Earth Sciences, Utrecht, sep. 42, 19 p., 8 Figs.Google Scholar
  13. BOLIN, B. (1977): Modeling the oceans and ocean sediments and their response to fossil fuel Carbon dioxide emissions. In: Andersen, N.R., Malakoff, A. (eds.) The fate of fossil fuel CO2 in the oceans.- Plenum Press, New York London, p. 81–95.Google Scholar
  14. BOLIN, B., DEGENS, E.T., KEMPE, S., KETNER, P. (eds.) (1979): The global carbon cycle.- SCOPE 13, Wiley, Chichester - New York - Brisbane - Toronto, 491 S.Google Scholar
  15. BROECKER, W.S., TAKAHASHI, F., SIMPSON, H.J., PENG, T.-H. (1979): Fate of fossil fuel carbon dioxide and the global carbon budget.-Science V. 206, No. 4417: 409–418.Google Scholar
  16. BRUCKNER, W.D. (1953): Cyclic calcareous sedimentation as an index of climatic variations in the past.- J. Sediment. Petrol. 23: 235–237.Google Scholar
  17. CAMPOS, H.S. and HALLAM, A. (1979): Diagenesis of English Lower Jurassic limestones as inferred from oxygen and carbon isotope analysis.- Earth and Planetary Sci. Lett. 45: 23–31.Google Scholar
  18. CLINE, R.M. & HAYS, J.D. (eds.) (1976): Investigation of Late Quaternary Paleoceanography and Paleoclimatology.- Geol.-Soc. Am., Memoir 145, 464 p.Google Scholar
  19. DEAN, W.E., GARDNER, J.V., JANSA, L.F., CEPEK, P. & SEIBOLD, E. (1977): Cyclic sedimentation along the continental margin of northwest Africa. In: Lancelot, Y., Seibold, E. et al., Initial Reports of Deep Sea Drilling Project, 41: 965–990, Washington (U.S. Government Printing Office ).Google Scholar
  20. DEAN, W.E., GARDNER, J.V. & CEPEK, P. (1981): Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, eastern equatorial Atlantic Ocean.- Marine Geology v. 39, 1 /2: 81–101.Google Scholar
  21. DEGENS, E.T., KEMPE, S. (1979): Heizen wir unsere Erde auf?- Bild der Wissenschaft, 16 Jg., H. 8: 52–58.Google Scholar
  22. DEGENS, E.T. & STOFFERS, P. (1976): Stratified waters as a key to the past.- Nature 263: 22–27.Google Scholar
  23. DOMINIK, J. & STOFFERS, P. (1979): The influence of Late Quaternary stagnations on clay sedimentation in the Eastern Mediterranean Sea.- Geol. Rundschau, 68: 302–317, Stuttgart.Google Scholar
  24. DUFF, P. McL. D., HALLAM, A., WALTON, E.K. (1967): Cyclic sedimentation.- Developm. Sedimentology 10, Elsevier, Amsterdam, 280 p.Google Scholar
  25. Einsele, G. (1977): Range, velocity, and material flux of compaction flow in growing sedimentary sequences.- Sedimentology 24: 639–655.Google Scholar
  26. EINSELE, G. KELTS, K. (1981): Significance, sedimentological and mass physical properties, and early diagenesis of Pliocene/Quaternary mud turbidites in the Gulf of California. In: Curray, J.R., Moore, D.G. et al., Initial Reports of the Deep Sea Drilling Project, v. 64, Washington (U.S. Government Printing Office), in press.Google Scholar
  27. EINSELE, G., MOSEBACH, R. (1955): Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura.- Neues Jb. Geol. Paläont., Abh., 101, 3: 319–430, Stuttgart.Google Scholar
  28. ERNST, G. (1976): Calibration of stratigraphic methods in the boreal Cretaceous of Germany.- 25th Internat. Geol. Congr. Sydney, Abstracts, v. 1: 267–268.Google Scholar
  29. ERNST, G., SCHMIDT, F. & KLISCHIES, G. (1979): Multistratigraphische Untersuchungen in der Oberkreide des Raumes Braunschweig-Hannover. In: Wiedmann, J. (ed.), Aspekte der Kreide Europas.-Internat. Union Geol. Sciences, Series A, No. 6: 11–46, Stuttgart.Google Scholar
  30. FISCHER, A.G. (1964): The Lofer cyclothems of the Alpine Triassic. In: Symposium on Cyclic sedimentation.-Kansas Geol. Survey Bull. 169: 107–149.Google Scholar
  31. FISCHER, A.G. (1981): The 21.000 year shale-limestone rhythm.- J. Geol. Soc. London (in press).Google Scholar
  32. FLüGEL, H., FENNINGER, A. (1966): Die Lithogenese der Oberalmer Schichten und der mikritischen Plassen-Kalke ( Tithonium, Nördliche Kalkalpen).- N.Jb.Geol.Paläont. Abh. 123: 249–280.Google Scholar
  33. FREEZE, A.R., CHERRY, J.A. (1979): Groundwater.- Prentice-Hall, Englewood Cliffs N.J., 604 p.Google Scholar
  34. FREYBERG, B. von (1966): Der Faziesverband im Unteren Malm Frankens. Ergebnisse der Stromatometrie. Erlanger Geolog. Abh., H. 62: 1–92.Google Scholar
  35. FUCHTBAUER, H., MüLLER, G. (1970): Sedimente und Sedimentgesteine.(Sediment-Petrologie, Teil II). Schweizerbart, Stuttgart, 726 S.Google Scholar
  36. FUCHTBAUER, H., TISLAR, J. (1975): Peritidal cycles in the lower Cretaceous of Istria ( Jugoslavia).- Sediment. Geology 14: 219–233.Google Scholar
  37. FüRSICH, F.T. (1977): Corallian (Upper Jurassic) marine benthic asso- ciations from England and Normandy.- Palaeontology 20: 337–385.Google Scholar
  38. GARRELS, R.M., MACKENZIE, F.T. & HUNT, C. (1975): Chemical cycles and the global environment.- Kaufmann, Los Altos, 206 p.Google Scholar
  39. GARRISON, R.E., KENNEDY, W.J. (1977): Origin of solution seams and flaser structure in Upper Cretaceous chalks of southern England.- Sediment. Geology 19: 107–137.Google Scholar
  40. GOLUBIC, S., KRUMBEIN, W., SCHNEIDER, J. (1979): The carbon cycle. In: Trudinger, P.A., Swaine, D.J. (eds.) Studies in Environmental Science 3: Biogeochemical cycling of mineral-forming elements.- Elsevier, Amsterdam, p. 29–45.Google Scholar
  41. GOLUBIC, S., SCHNEIDER, J. (1979): Carbonate dissolution. In: Trudinger, P.A., Swaine, D.J. (eds.) Biogeochemical cycling of mineral-forming elements.- Studies in Environmental Science 3, Elsevier, Amsterdam, p. 107–129.CrossRefGoogle Scholar
  42. GWINNER, M.P. (1976): Origin of the Upper Jurassic limestones of the Swabian Alb ( Southwestern Germany).- Contrib. Sedimentology 5: 1–75.Google Scholar
  43. HALLAM, A. (1964): Origin of the limestone-shale rhythms in the Blue Lias of England: A composite theory.- J. Geology, 72: 157–168.Google Scholar
  44. HATTIN, D.E. (1971): Widespread, synchronously deposited, burrow-mottled limestone beds in Greenhorn Limestone (Upp.Cret.) of Kansas and Southeastern Colorado.- Amer. Assoc. Petrol. Geol. Bull. 55: 412–431.Google Scholar
  45. HAYS, Y.D., IMBRIE, J. & Shackleton, N.J. (1976): Variations of the easth’s orbit: Pacemaker of the ice ages.- Science 194: 1121–1132.Google Scholar
  46. HOLLAND, H.D. (1978): Chemistry of the Atmosphere and the Oceans.-Wiley, New York, 351 p.Google Scholar
  47. HUDSON, J.D. (1975): Carbon isotopes and limestone cement.- Geology: 19–22.Google Scholar
  48. HUDSON, J.D. (1977): Stable isotopes and limestone lithification.Geol. Soc. London Quart. J., v. 133: 637–660.Google Scholar
  49. HUDSON, J.D. (1978): Concretions, isotopes, and the diagenetic history of the Oxford Clay (Jurassic) of central England.- Sedimentology 25: 339–370.Google Scholar
  50. IMBRIE, J. & IMBRIE, K.P. (1979): Ice Ages, solving the mystery.-MacMillan, London, 224 p. 51Google Scholar
  51. IRWIN, H., CURTIS, C. & COLEMAN, M. (1977): Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments.- Nature 269, No. 5625: 209–213.Google Scholar
  52. INIGNET, P. & KENNEDY, W.J. (1974): Structures sédimentaires et mode d’accumulation de la craie du Turonien supérieur et du Sénonien du Pays de Caux.- Bull. Bur. Rech. Geol. Min. (deux. serie), sect. 4, 1: 19–47.Google Scholar
  53. KAUFFMAN, E.G. (1977): Cretaceous facies, faunas, and paleoenvironments across the Western Interior Basin.- The Mountain Geologist 14: 75–274.Google Scholar
  54. KELLER, G. (1980): Middle to Late Miocene planktonic foraminiferal datum levels and paleoceanography of the North and Southeastern Pacific Ocean.- Marine Mikropaleontology 5: 249–281.Google Scholar
  55. KENT, P.E. (1936): The formation of the hydraulic limestones of the Lower Lias.- Geol. Mag. 73: 476–478.Google Scholar
  56. KIDD, R.B., CITA, M.B., RYAN, W.B.F. (1978): Stratigraphy of Eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance. In: Hsu, K., Montadert, L. et al.- Init. Reports Deep Sea Drilling Project, 42, I, Washington (U.S. Government Print. Off. ).Google Scholar
  57. LOMBARD, A. (1972): Series sédimentaires. Genèse - évolution.-Masson, Paris, 425 p.Google Scholar
  58. LUZ, B. & SHACKLETON, N.J. (1975): CaCO solution in the tropical East Pacific during the past 130.000 years.-Cushman Found. Foraminiferal Res. Spec. Publ., 13: 142–150.Google Scholar
  59. MATTER, A., DOUGLAS, R.G. & PERCH-NIELSEN, K. (1975): Fossil preservation, geochemistry, and diagenesis of pelagic carbonates from Shatsky Rise, Northwest Pacific. In: Larson, R.L., Moberly, R. et al. Initial Reports of Deep Sea Drilling Project, v. 32: 891–921, Washington (U.S. Governm. Print. Off. ).Google Scholar
  60. MILLIMAN, J.D., ROSS, D.A. & KU, T.H. (1969): Precipitation and lithification of deep-sea carbonates in the Red Sea.- J. Sediment. Petrol. 39: 724–736.Google Scholar
  61. MILLIMAN, J.D. (1974): Marine carbonates.- Springer, Berlin, 375 p.Google Scholar
  62. NOBLE, J.P.A., HOWELLS, K.D.M. (1974): Early marine stratification of the nodular limestones in the Silurian of New Brunswick..Sedimentology 21: 597–609.Google Scholar
  63. OVERBECK, R. (1980): Verwitterung von Mergelkalken durch TrocknungsBefeuchtungs-Wechsel.- Unpublished Rep., Geolog. Inst. Tübingen, 8 p, 7 Figs.Google Scholar
  64. PARK, W.C. & SCHOT, E.H. (1968): Stylolites: their nature and origin. - J. Sediment. Petrology, v. 38: 175–191.Google Scholar
  65. PISIAS, N.G. (1976): Late Quaternary sediment of the Panama Basin: sedimentation rates, periodicities, and controls of carbonate and opal accumulation.- Geol. Soc. America, Memoir 145: 375–391.Google Scholar
  66. PRELL, W.L., HAYS, J.D. (1976): Late Pleistocene faunal and temperature patterns of the Colombia Basin, Caribean Sea. In: Cline, R.M., Hays, J.D. (eds.) Investigation of Late Quaternary Paleoce-anography and Paleoclimatology.- Geol. Soc. Amer., Memoir 145: 201–220. 52Google Scholar
  67. RAD, U. v., EINSELE, G. (1980): Mesozoic-Cainozoic subsidence history and palaeobathymetry of the northwest African continental margin (Aaiun Basin to D.S.D.P. Site 397).- Peil. Trans. R. Soc. London A 294: 37–50.Google Scholar
  68. RAISWELL, R. (1971): The growth of Cambrian and Liassic concretions.Sedimentology 17: 147–171.CrossRefGoogle Scholar
  69. RAMSAY, A.T.S. (1974): The distribution of calcium carbonate in deep sea sediments.- Soc. Econ. Paleont. Miner. Spec. Publ. 20: 53–76.Google Scholar
  70. RUDDIMAN, W.F., MCINTYRE, A. (1976): Northeast Atlantic paleoclimate changes over the past 600.000 years. In: Cline, R.M., Hays, J.D. (eds.) Investigation of Late Quaternary paleoceanography and paleoclimatology.- Geol. Soc. Amer., Memoir 145: 111–146.Google Scholar
  71. Rupke, N.A. & Stanley, D.J. (1974): Distinctive properties of turbiditic and hemipelagic mud layers in the Algéro-Balearic Basin, western Mediterranean Sea.- Smithsonian Contrib. Earth Sciences, No. 13, 40 p., Washington.Google Scholar
  72. Sarnthein, M. (1972): Stratigraphic contamination by vertical bioturbation in Holocene shelf sediments.- 24th Internat. Geol. Congress, Montreal, Section 6: 432–436.Google Scholar
  73. Sarnthein, M. (1978): Sand deserts during glacial maximum and climatic optimum.- Nature 271 (5648): 43–46.Google Scholar
  74. Schneider, F.K. (1964): Erscheinungsbild und Entstehung der rhythmischen Bankung der altkretazischen Tongesteine Nordwestfalens und der Braunschweiger Bucht. Ein Beitrag zur Absolutchronologie von Hauterive bis Alb.- Fortschr. Geol. Rheinl. Westf. 7: 353–382, Krefeld.Google Scholar
  75. Schlanger, S.O., Douglas, R.G. (1974): The pelagic ooze-chalk limestone transition and its implications for marine stratigraphy.Spec. Publ. Internat. Ass. Sediment v. 1: 117–148.Google Scholar
  76. Scholle, P.A. & Arthur, M.A. (1980): Carbon isotope fluctuations in Cretaceous Pelagic limestones: potential stratigraphic and petroleum exploration tool.-Am. Assoc. Petrol-Geol. Bull. v. 64, 1: 67–87Google Scholar
  77. Schwarzacher, W. (1975): Sedimentation models and quantitative strati- graphy. Developm. Sedimentology 19, Elsevier, Amsterdam, 382 p.Google Scholar
  78. Sclater, J.G., Hellinger, S. & Tapscott, C. (1977): The paleobathymetry of the Atlantic Ocean from the Jurassic to the present.-J. Geol. 85: 509–552.CrossRefGoogle Scholar
  79. Seibertz, E. (1979): Stratigraphisch-fazielle Entwicklung des Turon im südöstlichen Münsterland (Oberkreide, NW-Deutschland).- Newsl. Stratigr., 8: 3–60, Berlin - Stuttgart.Google Scholar
  80. SEIBOLD, E. (1952): Chemische Untersuchungen zur Bankung im unteren Malm Schwabens.- N. Jb. Geol., Abh. 95: 337–370, Stuttgart.Google Scholar
  81. SEIBOLD, E. & I. (1953): Foraminiferenfauna eines Profils im gebankten unteren Malm Schwabens.- N. Jb. Geol. u. Paläontol., Abh. 98, 1: 28–86, Stuttgart.Google Scholar
  82. SEIBOLD, E. (1962): Kalk-Konkretionen und karbonatisch gebundenes Magnesium.- Geochimica et Cosmochimica Acta, v. 26: 899–909. 53Google Scholar
  83. SHACKLETON, N.J. (1977): Carbon 13 in Uvigerina: tropical rain forest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen, N.R. & Malakoff, A. (eds.) The fate of fossil fuel CO2 in the ocean.- New York, Plenum Press: 401–427.Google Scholar
  84. SHACKLETON, N.J., OPDYKE, N.D. (1973): Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V 28–238.- Quaternary Research, v. 3: 39–55.Google Scholar
  85. SHACKLETON, N.J., OPDYKE, N.D. (1976): Oxygen-isotope and magnetic stratigraphy of Pacific core V 28–239 late Pliocene to latest Pleistocene. In: Cline, R.M., Hays, J.D. (eds.) Investigation of Late Quaternary paleoceanography and paleoclimatology. Geol. Soc. Am. Mem. 145: 449–464.Google Scholar
  86. SIEGENTHALER, U., OESCHGER, H. (1978): Predicting future atmospheric carbon dioxide levels.- Science 199: 388–395.Google Scholar
  87. STOWE, K.S. (1979): OceanScience.- Wiley, New York, 610 p.Google Scholar
  88. SUJKOWSKI, Z.L. (1958): Diagenesis.- Bull. Am. Assoc. Petrol. Geologists, 42: 2692–2717.Google Scholar
  89. VAIL, P.R., MITCHUM, R.M.jr (1979): Global cycles of relative changes of sea level from seismic stratigraphy. In: Watkins, J.S., Montadert, L., DICKERSON, P.W. (eds.) Geological and geophysical investigations of continental margins.- Am. Assoc. Petrol. Geolog., Memoir 29: 469–472.Google Scholar
  90. VEIZER, J. (1977): Geochemistry of lithographic limestones and dark marls from the Jurassic of Southern Germany.- N.Jb.Geol.Paldont. Abh. 153: 129–146, Stuttgart.Google Scholar
  91. VOLAT, J.L., PASTOURET, L. & VERGNAUD-GRAZZINI, C. (1980): Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: a review.- Marine Geology 34: 1–28.Google Scholar
  92. WATTS, A.B., STECKLER, M.S. (1979): Subsicence and lustasy at the continental margin of eastern North America. In: Talwani, M., Hay, W., Ryan, W.B.F. (eds.) Deep Drilling results in the Atlantic Ocean: continental margins and paleoenvironment.- Maurice Ewing Series 3: 218–234. Am. Geophys. Union, Washington D.C.Google Scholar
  93. WEILER, H. (1957): Untersuchungen zur Frage der Kalk-Mergel-Sedimentation im Jura Schwabens.- Diss. Univ. Tübingen, 58 S.Google Scholar
  94. WEISSERT, H., MCKENZIE, J. & HOCHULI, P. (1979): Cyclic anoxic events in the early Cretaceous Tethys Ocean.- Geology 7: 147–151.Google Scholar
  95. WETZEL, A. (1981): Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinen-talrand.- “Meteor” Forsch.-Ergebnisse, Reihe C, 34: 1–47, Berl in Stuttgart.Google Scholar
  96. WOODWELL, G.M. (1979): Das Kohlendioxid-Problem.- Spektrum der Wissenschaft, Erst-Edition, Weinheim.Google Scholar
  97. ZIEGLER, B. (1958): Feinstratigraphische Untersuchungen im Oberjura Südwestdeutschlands–ihre Bedeutung für Paläontologie und Paläogeographie.- Eclogae Geol. Helv., 58: 265–278.Google Scholar
  98. ZIEGLER, B. (1977): The “White” (Upper) Jurassic in Southern Germany.-Stuttgarter Beiträge Naturk., Ser. B, Nr. 26: 1–79.Google Scholar

Copyright information

© Springer 1982

Authors and Affiliations

  • G. Einsele

There are no affiliations available

Personalised recommendations