Haustoria-Like Structures and Hydrophobic Cell Wall Surface Layers in Lichens

  • Rosmarie Honegger


The polyphyletic, taxonomically very heterogenous group of lichen-forming fungi comprises about 21% of all fungi (±13 250 spp. or 46% of all ascomycetes, ±50spp./0.3% of basidiomycetes, and ±200spp./1.2% of imperfect fungi [20]). Lichen-forming fungi are nutritionally specialized, but otherwise normal representatives of their subclasses, and there are no reasons for separating them taxonomically from nonlichenized taxa. In only about 2% of lichens has the photobiont ever been determined at the species level [52], and very little is known about the range of compatible photobionts of individual lichen mycobionts. A large number of lichen-forming fungi seem to be moderately specific (several algal species of a genus are acceptable partners), but highly selective towards their photobionts (compatible photobionts are often very rare in natural ecosystems, and the most common taxa of free-living algae are not acceptable partners [16]). Unicellular and filamentous Charophyceae, Chlorophyceae and Ulvophyceae [34, 48] and/or nitrogen-fixing cyanobacteria (altogether about 100 spp.) have been identified as lichen photobionts [52]. The lichen symbiosis is not inheritable, but numerous taxa disperse very efficiently by means of vegetative symbiotic propagules.


Algal Layer Conidial Fungus Mother Cell Wall Lichen Symbiosis Medullary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmadjian V (1982) Algal/fungal symbiosis. In: Round F, Chapman DJ (eds) Progress in phycological research. Elsevier, Amsterdam, Vol 1, pp 179–233Google Scholar
  2. 2.
    Aronson JA (1981) Cell wall chemistry, ultrastructure and metabolism. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, Vol 2. Academic Press, New York, pp 459–507Google Scholar
  3. 3.
    Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allayway WG (1988) Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147: 149–161CrossRefGoogle Scholar
  4. 4.
    Beever RE, Dempsey GM (1978) Function of rodlets on the surface of fungal spores. Nature 272: 608–610PubMedCrossRefGoogle Scholar
  5. 5.
    Beever RE, Redgwell RJ, Dempsey GM (1979) Purification and chemical characterization of the rodlet layer of Neurospora crassa conidia. J Bacteriol 140: 1063–1070PubMedGoogle Scholar
  6. 6.
    Brown DH, Rapsch S, Beckett A, Ascaso C (1987) The effect of desiccation on cell shape in the lichen Parmelia sulcata Taylor. New Phytol 105: 295–299CrossRefGoogle Scholar
  7. 7.
    Brunner U, Honegger R (1985) Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in six genera of lichen phycobionts. Can J Bot 63:2221–2230CrossRefGoogle Scholar
  8. 8.
    Cole GT, Pope LM (1981) Surface wall components of Aspergillus niger conidia. In: Turian G, Hohl HR (eds) The fungal spore: morphogenetic controls. Academic Press, London, pp 195–215Google Scholar
  9. 9.
    Cole GT, Samson RA (1979) Patterns of development in conidial fungi. Pitman, LondonGoogle Scholar
  10. 10.
    Cole GT, Sekiya T, Kasai R, Yokoyama T, Nozawa Y (1979) Surface ultrastructure and chemical composition of the cell walls of conidial fungi. Exp Mycol 3: 132–156CrossRefGoogle Scholar
  11. 11.
    Cole GT, Pope LM, Huppert M, Sun SH, Starr P (1983) Ultrastructure and composition of conidial wall fractions of Coccidioides immitis. Exp Mycol 7: 297–318CrossRefGoogle Scholar
  12. 12.
    Crittenden PD (1989) Nitrogen relations of mat-forming lichens. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, pp 243–268Google Scholar
  13. 13.
    Dempsey GP, Beever RE (1979) Electron microscopy of the rodlet layer of Neurospora crassa conidia. J Bacteriol 140: 1050–1062Google Scholar
  14. 14.
    Duddridge J, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Monotropa hypopitys L. New Phytol 92: 203–214CrossRefGoogle Scholar
  15. 15.
    Ferrari TE, Best V, More TA, Comstock P, Muhammad A, Wallace H (1985) Intercellular adhesions in the pollen-stigma system: pollen capture, grain binding and tube attachments. Am J Bot 72: 1466–1474CrossRefGoogle Scholar
  16. 16.
    Galun M, Bubrick P (1984) Physiological interactions between the partners of the lichen symbiosis. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. Encyclopedia of Plant Physiology. Springer, Berlin Heidelberg New York Tokyo, pp 362–401CrossRefGoogle Scholar
  17. 17.
    Gärtner G (1985) Die Gattung Trebouxia PUYMALY (Chlorellales, Chlorophyceae). Arch Hydrobiol Suppl 71: 495–548Google Scholar
  18. 18.
    Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  19. 19.
    Hashimoto T, Wu-Yuan CD, Blumenthal HD (1976) Isolation and characterization of the rodlet layer of Trichophyton mentagrophytes microconidial wall. J Bacteriol 127:1543–1549PubMedGoogle Scholar
  20. 20.
    Hawksworth DL (1988) The fungal partner. In: Galun M (ed) Handbook of lichenology. CRC, Boca Raton FL, Vol 1, pp 35–38Google Scholar
  21. 21.
    Hill DJ (1985) Changes in photobiont dimensions and numbers during co-development of lichen symbionts. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 303–317CrossRefGoogle Scholar
  22. 22.
    Hill DJ (1989) The control of the cell cycle in microbial symbionts. New Phytol 112: 175–184CrossRefGoogle Scholar
  23. 23.
    Hill DJ, Ahmadjian V (1972) Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta 103: 267–277CrossRefGoogle Scholar
  24. 24.
    Honegger R (1982) Cytological aspects of the triple symbiosis in Peltigera aphthosa. J Hattori Bot Lab 52: 379–391Google Scholar
  25. 25.
    Honegger R (1984) Cytological aspects of the mycobiont-phycobiont relationship in lichens. Haustorial types, phycobiont cell wall types, and the ultrastructure of the cell wall surface layers in some cultured and symbiotic myco- and phycobionts. Lichenologist 16: 111–127CrossRefGoogle Scholar
  26. 26.
    Honegger R (1985a) Fine structure of different types of symbiotic relationships in lichens. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 287–302CrossRefGoogle Scholar
  27. 27.
    Honegger R (1985b) Scanning electron microscopy of the fungus-plant cell interface: a simple preparative technique. Trans Br Mycol Soc 84: 530–533CrossRefGoogle Scholar
  28. 28.
    Honegger R (1986a) Ultrastructural studies in lichens. I. Haustorial types and their frequencies in a range of lichens with trebouxioid phycobionts. New Phytol 103: 785–795CrossRefGoogle Scholar
  29. 29.
    Honegger R (1986b) Ultrastructural studies in lichens II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol 103: 797–808CrossRefGoogle Scholar
  30. 30.
    Honegger R (1987) Questions about pattern formation in the algal layer of lichens with stratified (heteromerous) thalli. Bibl Lichenol 25: 59–71Google Scholar
  31. 31.
    Honegger R (1988) The functional morphology of cell-to-cell interactions in lichens. In: Scannerini S, Smith DC, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant animal and microbial symbiosis. NATO ASI series, Vol H17 Springer, Berlin Heidelberg New York Tokyo, pp 39–53CrossRefGoogle Scholar
  32. 32.
    Honegger R (1990) Surface interactions in lichens. In: Wiessner W, Robinson DG, Starr RC (eds) Experimental Phycology, Vol. 1. Cell walls and surfaces, Reproduction, Photosynthesis. Springer, Berlin Heidelberg New York Tokyo pp. 40–54Google Scholar
  33. 33.
    Honegger R, Brunner U (1981) Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59: 2713–2734CrossRefGoogle Scholar
  34. 34.
    Irvine DEG, John DM (eds) (1984) Systematics of the green algae. Academic Press, LondonGoogle Scholar
  35. 35.
    Jahns HM (1984) Morphology, Reproduction and water relations — a system of morphogenetic interactions in Parmelia saxatilis. Nova Hedwigia Beih 79: 715–737Google Scholar
  36. 36.
    Kershaw KA (1985) Physiological ecology of lichens. Cambridge University PressGoogle Scholar
  37. 37.
    Komyia T, Shibata S (1971) Polyols produced by the cultured phyco- and mycobionts of some Ramalina species. Phytochemistry 10: 695–699CrossRefGoogle Scholar
  38. 38.
    Kunoh H, Yamaoka N, Yoshioka H, Nicholson R (1988) Preparation of the infection court by Erysiphe graminis I. Contact-mediated changes in morphology of the conidium surface. Exp Mycol 12: 325–335CrossRefGoogle Scholar
  39. 39.
    Lange O (1969) Die funktionelle Anpassung der Flechten an die ökologischen Bedingungen arider Gebiete. Ber Dtsch Bot Ges 82: 3–22Google Scholar
  40. 40.
    Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13C NMR study of photosynthate transport and metabolism in the liehen Xanthoria caldcola Oxner. New Phytol 111:447–456CrossRefGoogle Scholar
  41. 41.
    Littlefield LJ (1981) Biology of the plant rusts. Iowa State University Press, AmesGoogle Scholar
  42. 42.
    Mameli E (1920) Note critiche ad aleune moderne teorie sulla natura del consortio lichenico. Atti Ist Bot Univ Pavia NS 17: 209–227Google Scholar
  43. 43.
    Maruo B, Hattori T, Takahashi H (1965) Excretion of ribitol and sucrose by green algae into the culture medium. Agrie Biol Chem 29: 1084–1089CrossRefGoogle Scholar
  44. 44.
    McLaughlin DJ (1982) Basidial and basidiospore development. In: Wells K, Wells E (eds) Basidium and basidiocarp. Springer, Berlin Heidelberg New York, pp 37–74CrossRefGoogle Scholar
  45. 45.
    Mendgen K (1978) Der Infektionsverlauf von Uromyces phaseoli bei anfälligen und resistenten Bohnensorten. Phytopathol Z 93: 295–313CrossRefGoogle Scholar
  46. 46.
    Plessl A (1963) Ueber die Beziehunge von Pilz und Alge im Flechtenthallus. Oesterr Bot Z 110:194–269CrossRefGoogle Scholar
  47. 47.
    Richardson DHS, Hill DJ, Smith DC (1968) Liehen Physiology XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67: 469–486CrossRefGoogle Scholar
  48. 48.
    Sluiman HJ (1989) The green algal class Ulvophyceae. An ultrastructural survey and classification. Crypt Bot 1: 83–94Google Scholar
  49. 49.
    Smith DC (1978) What can lichens tell us about real fungi? Mycologia 70: 915–934CrossRefGoogle Scholar
  50. 50.
    Smith DC, Douglas A (1987) The biology of symbiosis. Edward Arnold, LondonGoogle Scholar
  51. 51.
    Tschermak E (1941) Untersuchungen über die Beziehungen von Pilz und Alge im Flechtenthallus. Oesterr Bot Z 90: 233–307CrossRefGoogle Scholar
  52. 52.
    Tschermak-Woess E (1988) The algal partner. In Galun M (ed) Handbook of lichenology, Vol 1. CRC Boca Raton FL, pp 39–92Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Rosmarie Honegger
    • 1
  1. 1.Institute of Plant BiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations