Skip to main content

Mycorrhizal and Pathogenic Fungi: Do They Share Any Features?

  • Chapter

Abstract

Symbiotic interactions of higher plants and fungi range from pathogenic to mutualistic associations, depending on the nutritional strategy of the microorganism [26]. Plant pathogens drain sugars from specific autotrophic partners and express their virulent phenotype on them, producing toxins and/or enzymes, lastly causing “plant diseases” [30]. Mycorrhizal fungi, which are the most common symbiotic fungi, spend an important part of their life cycle inside the host. Like pathogenic fungi, most mycorrhizal fungi drain sugars from the host, but they counter this drawback by improving the mineral nutrition of the plant. The common response during these symbiotic associations is a growth increase of the host [23]. Therefore, beside the different responses of the colonized plant at the organismic level, the pathway of the nutrient flux represents an important difference between pathogenic and mycorrhizal associations at the cellular level. It goes from the plant towards the heterotrophic fungus following a one-way route in pathogenic interaction, while there is a two-way exchange in the mycorrhizal interaction [39].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander T, Meier R, Toth R, Weber HC (1988) Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays. New Phytol 110: 363–370

    Article  Google Scholar 

  2. Anagnostakis SL (1982) Biological control of chestnut blight. Science 15: 466–471

    Article  Google Scholar 

  3. Berg RH, Erdos GW, Gritzali M, Brown RD Jr (1988) Enzyme-gold affinity labelling of cellulose. J Electron Microsc Tech 8: 371–379

    Article  PubMed  CAS  Google Scholar 

  4. Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 on the root system of Allium porrum L. New Phytol 114:207–215

    Article  Google Scholar 

  5. Berta G, Sgorbati S, Soleri V, Fusconi A, Trotta A, Citterio MG, Sparvoli E, Scannerini S (1990) Chromatin structure variations in host nuclei of a VA mycorrhiza. New Phytol 114: 199–205

    Article  Google Scholar 

  6. Bolwell GP (1988) Synthesis of cell wall components: aspects of control. Phytochemistry 27: 1235–1253

    Article  CAS  Google Scholar 

  7. Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizas. CRC Press, Boca Raton, USA, pp 5

    Google Scholar 

  8. Bonfante-Fasolo P (1987) Vesicular-Arbuscular Mycorrhizae: Fungus-plant interactions at the cellular level. Symbiosis 3: 249–268

    Google Scholar 

  9. Bonfante-Fasolo P (1988) The role of the cell-wall as a signal in mycorrhizal associations. In: Scannerini S, Smith DC, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animal, and microbial symbiosis. Springer, Berlin Heidelberg New York Tokyo, pp 219

    Chapter  Google Scholar 

  10. Bonfante-Fasolo P, Vian B (1989) Cell wall architecture in mycorrhizal roots of Allium porrum L. Ann Sci Nat Bot 13: 97–109

    Google Scholar 

  11. Bonfante-Fasolo P, Perotto S, Testa B, Faccio A (1987) Ultrastructural localization of cell surface sugar residues in ericoid mycorrhizal fungi by gold-labeled lectins. Protoplasma 137: 25–35

    Article  Google Scholar 

  12. Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94: 157–165

    Article  CAS  Google Scholar 

  13. Bonfante-Fasolo P, Vian B, Perotto S, Faccio A, Knox A (1990) Cellulose and pectin localization in roots of mycorrhizal Allium porrum: labelling continuity between host cell wall and interfacial material. Planta 180: 537–547

    Article  CAS  Google Scholar 

  14. Burggraaf JP, Beringer JE (1989) Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytol 111: 25–33

    Article  Google Scholar 

  15. Cassone A, Torosantucci A, Boccanera M, Pellegrini G, Palma C, Malavasi F (1988) Production and characterization of a monoclonal antibody to a cell surface, glu-comannoprotein constituent of Candida albicans and other pathogenic Candida species. J Med Microbiol 27: 233–238

    Article  PubMed  CAS  Google Scholar 

  16. Cervone F, Castoria R, Spanu P, Bonfante-Fasolo P (1988) Pectinolytic activity in some ericoid mycorrhizal fungi. Trans Br Mycol Soc 91: 537–539

    Article  CAS  Google Scholar 

  17. Codignola A, Verotta L, Maffei M, Spanu P, Scannerini S, Bonfante-Fasolo P (1989) Cell wall bound phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol 112: 221–228

    Article  CAS  Google Scholar 

  18. Dumas E, Gianinazzi-Pearson V, Gianinazzi S (1990) Production of new soluble proteins during VA endomycorrhiza formation. In: 2nd European Symposium on Mycorrhizae Aug 14–20 1988 Prague, Agricultural Ecosystems and Environments 29: 111–114

    Google Scholar 

  19. Esquerre-Tugaye MT, Lafitte C, Mazau D, Toppan A, Touze A (1979) Cell surfaces in plant microorganism interactions. II. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanisms. Plant Physiol 64: 320–326

    Article  PubMed  CAS  Google Scholar 

  20. Gay JL, Salzberg A, Woods AM (1987) Dynamic experimental evidences for the plasmamembrane ATPase domain hypothesis of haustorial transport and for ionic coupling of the haustorium of Erysiphe graminis to the host cell (Hordeum vulgare). New Phytol 107: 541–548

    Article  CAS  Google Scholar 

  21. Gianinazzi-Pearson V, Gianinazzi S (1988) Morphological integration and functional compatibility between symbionts in vesicular arbuscular endomycorrhizal associations. In: Scannerini S, Smith DC, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animal, and microbial symbiosis. Springer, Berlin Heidelberg New York Tokyo, pp 73

    Chapter  Google Scholar 

  22. Gianinazzi-Pearson V, Bonfante-Fasolo P, Dexheimer J (1986) Ultrastructural studies of surface interactions during adhesion and infection by ericoid endomycorrhizal fungi. In: Lugtenberg B (ed) Recognition in microbe plant symbiotic and pathogenic interactions. NATO ASI Series Vol H4, Springer, Berlin Heidelberg New York Tokyo, pp273

    Chapter  Google Scholar 

  23. Harley JL, Smith SE (1983) Mycorrhizal symbiosis, Academic Press, London

    Google Scholar 

  24. Hepper CM (1979) Germination and growth of Glomus caledonius spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11: 269–277

    Article  CAS  Google Scholar 

  25. Hubert JL, Martin F (1988) Regulation of gene expression in ectomycorrhizas. I. Protein changes and the presence of ectomycorrhiza specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytol 110: 339–346

    Article  Google Scholar 

  26. Jeffries P (1987) Pathways for the exchange of materials in mycoparasitic and plant-fungal interactions. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 735

    Google Scholar 

  27. Kapooria RG, Mendgen K (1985) Infection structures and their surface changes during differentiation in Uromyces fabae. Phytopathol Z 113: 317–323

    Article  Google Scholar 

  28. Keen NT (1986) Pathogenic strategies for fungi. In: Lugtenberg B (ed) Recognition in microbe plant symbiotic and pathogenic interactions. NATO ASI Series Vol H4, Springer, Berlin Heidelberg New York Tokyo, pp 171

    Chapter  Google Scholar 

  29. Keon JPR, Byrde RJW, Cooper RM (1987) Some aspects of fungal enzymes that degrade plant cell walls. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 133

    Google Scholar 

  30. Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224

    Article  PubMed  CAS  Google Scholar 

  31. Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S (1982) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. VI. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscule interface. New Phytol 90: 37–43

    Article  CAS  Google Scholar 

  32. Mendgen K, Schneider A, Sterk M, Fink W (1988) The differentiation of infection structures as a result of recognition events between some biotrophic parasites and their hosts. J Phytopathol 123: 259–272

    Article  Google Scholar 

  33. Mendgen K, Heitefuss R (1975) Microautoradiographic studies on host-parasite interactions. I. The infection of Phaseolus vulgaris with tritium-labelled uredospores of Uromyces phaseoli. Arch Microbiol 105: 193–199

    Article  Google Scholar 

  34. Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24: 357–364

    Article  CAS  Google Scholar 

  35. McNeil M, Darvill GA, Fry CS, Albersheim P (1984) Structure and function of the primary cell wall of plants. Annu Rev Biochem 53: 625–663

    Article  PubMed  CAS  Google Scholar 

  36. O’Connell RJ, Bailey JA (1986) Cellular interactions between Phaseolus vulgaris and the hemibiotrophic fungus Colletotrichum lindemuthianum. In: Bailey JA (ed) Biology and molecular biology of plant-pathogen interactions, NATO ASI Series, Vol HI Springer, Berlin Heidelberg New York Tokyo, pp 39

    Chapter  Google Scholar 

  37. Perotto S, Faccio A, Malavasi F, Bonfante-Fasolo P (1988) Detection of cell surface molecules in mycorrhizal fungi by using monoclonal antibodies. Giorn Bot Ital 122: 60–61

    Google Scholar 

  38. Perotto S, Van den Bosch KA, Brewin NJ, Faccio A, Knox JP, Bonfante-Fasolo P (1990) Modifications of the host cell wall during root colonization by Rhizobia and VAM fungi. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L., Smith DC (eds) Endocytobiology IV, pp 115

    Google Scholar 

  39. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–244

    Article  CAS  Google Scholar 

  40. Spanu P, Bonfante-Fasolo P (1988) Cell-wall bound peroxidase activity in roots of mycorrhizal Allium porrum. New Phytol 109: 119–124

    Article  CAS  Google Scholar 

  41. Spanu P, Boiler T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177: 447–455

    Article  CAS  Google Scholar 

  42. Van den Bosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J 8: 335–342

    Google Scholar 

  43. Vian B (1986) Ultrastructural localization of carbohydrates. Recent developments in cytochemistry and affinity methods. In: Bailey JA (ed) Biology and molecular biology of plant-pathogen interactions, NATO ASI Series, Vol HI, Springer, Berlin Heidelberg New York Tokyo, pp 49

    Chapter  Google Scholar 

  44. Wessels JGH (1986) Cell wall synthesis in apical hyphal growth. Int Rev Cytol 104: 37–79

    Article  CAS  Google Scholar 

  45. Wilson LG, Fry LC (1986) Extensin—a major cell wall glycoprotein. Plant Cell Environ 9: 239–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonfante-Fasolo, P., Perotto, S. (1991). Mycorrhizal and Pathogenic Fungi: Do They Share Any Features?. In: Mendgen, K., Lesemann, DE. (eds) Electron Microscopy of Plant Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75818-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75818-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75820-1

  • Online ISBN: 978-3-642-75818-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics