Skip to main content

Mechanisms of Stress-Induced Thermo- and Chemotolerances

  • Conference paper
Stress Proteins

Abstract

Thermotolerance, the acquisition of a transiently increased resistance to heat induced by exposure to elevated temperature was first observed in mammalian cells subjected to fractionated hyperthermia in the treatment of cancer (Gerner and Schneider 1975; Henle and Leeper 1976). The increased resistance is marked; a preconditioning heat treatment can result in increased survival following severe heat treatment in the order of 104 to 105. This phenomenon is distinct from a clonal selection of resistant cells, as often seen with drug resistance, since it is noninheritable and can be induced by non-lethal preconditioning treatments. Thermotolerance appears to be a universal phenomenon, being observed in all organisms tested (reviewed in Lindquist and Craig 1988; Subjeck and Shyy 1986). The expression of thermotolerance is also seen at the level of the whole organism and occurs under natural conditions as well as following laboratory manipulations (e.g., Easton et al. 1987). Despite its universal nature, little is known of the mechanisms which lead to the enhanced survival of thermotolerant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Black AR, Subjeck JR (1986) Correlation in the recovery of normal protein synthesis and the development of thermotolerance. J Cell Biol 103:188a

    Google Scholar 

  • Black AR, Subjeck JR (1989) Involvement of rRNA, synthesis in enhanced survival and recovery of protein synthesis seen in thermotolerance. J Cell Physiol 138:439–449

    Article  PubMed  CAS  Google Scholar 

  • Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102:1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Bora R, Eichholtz-Wirth H (1981) Effect of different physiological conditions on the action of adriamycin on Chinese hamster cells in vitro. Br J Cancer 44:241–246

    Article  Google Scholar 

  • Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH (1986) Heat shock and the heat shock proteins. Biochem J 240:313–324

    PubMed  CAS  Google Scholar 

  • Caizergues-Ferrer M, Bouche G, Amalric F (1980) Effects of heat shock on RNA polymerase activities in Chinese hamster ovary cells. Biochem Biophys Res Commun 97:538–545

    Article  PubMed  CAS  Google Scholar 

  • Chappel TG, Welch WJ, Schlossman DM, Polter KB, Schlesinger MJ, Rothman JE (1986) Un-coating ATPase is a member of the 70kDa family of stress proteins. Cell 45:3–13

    Article  Google Scholar 

  • Chétien P, Landry J (1988) Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster ceils. J Cell Physiol 137:157–166

    Article  Google Scholar 

  • Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman M (1990) Heat shock and arsenite increase expression of the multidrug resistance gene in human renal carcinoma cells. J Biol Chem 265: 221–226

    PubMed  CAS  Google Scholar 

  • Chirico WJ, Waters MC, Blobel G (1988), 70 k heat shock related proteins stimulate protein translocation into microsomes. Nature (Lond) 332:805–810

    Article  CAS  Google Scholar 

  • Colofiore JR, Ara G, Berry D, Belli JA (1982) Enhanced survival of adriamycin-treated Chinese hamster cells by 2-deoxy-D-glucose and 2, 4-dinitrophenol. Cancer Res 42:3934–3940

    PubMed  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A sub-family of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (Lond) 332:800–805

    Article  CAS  Google Scholar 

  • Duncan RF, Hershey JWB (1989) Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J Cell Biol 109:1467–1481

    Article  PubMed  CAS  Google Scholar 

  • Easton DP, Rutledge PS, Spotila JR (1987) Heat shock protein induction and induced thermal tolerance are independent in adult salamanders. J Exp Zool 241:263–267

    Article  PubMed  CAS  Google Scholar 

  • Fuhr JE (1974) Effect of hyperthermia on protein biosynthesis in L5178Y murine leukemic lymphoblasts. J Cell Physiol 84:365–372

    Article  PubMed  CAS  Google Scholar 

  • Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature (Lond) 256:500–502

    Article  CAS  Google Scholar 

  • Goldstein ES, Penman S (1973) Regulation of protein synthesis in mammalian cells. V. Further studies on the effect of actinomycin D on translation control in HeLa cells. J Mol Biol 80:243–254

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Strande DP (1976) Cytotoxic effects of hyperthermia and Adriamycin on Chinese hamster cells. J Natl Cancer Inst 57:1063–1067

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation of CHO cells recovery kinetics. Radiat Res 66:505–518

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1979) Effects of hyperthermia (45°) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Res 39:2665–2574

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1982) Modification of the heat response and thermotolerance by cycloheximide, hydroxyurea, and lucanthone in CHO cells. Radiat Res 90:339–347

    Article  PubMed  CAS  Google Scholar 

  • Hinds PW, Finlay CA, Frey AB, Levine AJ (1987) Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7:2863–2869

    PubMed  CAS  Google Scholar 

  • Hughes, CS, Shen JW, Subjeck JR (1989) Resistance to etoposide induced by three glucose regulated proteins in Chinese hamster ovary cells. Cancer Res 49:4452–4454

    PubMed  CAS  Google Scholar 

  • Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 82:6455–6459

    Article  PubMed  CAS  Google Scholar 

  • Joab I, Radayi C, Renoir M, Buchou T, Catulli MG (1984) Common non-hormone binding component in non-transformed chick oviduct receptors for four steroid hormones. Nature (Lond) 308:850–853

    Article  CAS  Google Scholar 

  • Johnston RN, Kucey BL (1988) Competitive inhibition of HSP70 gene expression causes thermosensitivity. Science 242:1551–1554

    Article  PubMed  CAS  Google Scholar 

  • Laszlo A (1989) The relationship of heat-shock proteins, thermotolerance, and protein synthesis. Exp Cell Res 178:401–414

    Article  Google Scholar 

  • Laszlo A, Li GC (1985) Heat resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc Natl Acad Sci USA 82:8029–8033

    Article  PubMed  CAS  Google Scholar 

  • Le Bivic A, Him M, Reggio H (1988) HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation. Proc Natl Acad Sci USA 85:136–140

    Article  PubMed  Google Scholar 

  • Lee YJ, Dewey WC, Li GC (1987) Protection of Chinese hamster ovary cells from heat killing by treatment with cycloheximide or puromycin; involvement of hsp’s? Radiât Res 111:237–253

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70-kD heat shock protein. EMBO J 4:3137–3143

    PubMed  CAS  Google Scholar 

  • Li GC (1983) Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and ethanol. J Cell Physiol 122:91–97

    Article  Google Scholar 

  • Li GC (1985) Elevated levels of 70,000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and their stable heat resistant variants. Int J Radiol Oncol Biol Phys 11:165–177

    Article  CAS  Google Scholar 

  • Li GC, Hahn GM (1978) Ethanol induced tolerance to heat and to adriamycin. Nature (Lond) 274:699–701

    Article  CAS  Google Scholar 

  • Li GC, Laszlo A (1985) Amino acid analogs, while inducing heat shock proteins, sensitize CHO cells to thermal damage. J Cell Physiol 122:91–97

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:63–77

    Article  Google Scholar 

  • Mazzarella RA, Green M (1987) ERp99, an abundant conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90kDa heat shock protein (hsp90) and the 94kDa glucose-regulated protein (grp94). J Biol Chem 262:8875–8883

    PubMed  CAS  Google Scholar 

  • Missen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I Effect on protein synthesis activity and regulation of heat shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  Google Scholar 

  • Munro S, Pelham H (1986) An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  PubMed  CAS  Google Scholar 

  • Oppermann H, Levinson W, Bishop HM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat shock protein. Proc Natl Acad Sci USA 78:1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Osborne EJ, MacKillop WJ (1987) The effect of exposure to elevated temperatures on the membrane permeability to adriamycin in Chinese hamster ovary cells in vitro. Cancer Lett 37:213–224

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3:3095–3100

    PubMed  CAS  Google Scholar 

  • Perry RP, Kelly DE (1970) Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol 76:127–140

    Article  PubMed  CAS  Google Scholar 

  • Petersen NS, Mitchel HK (1981) Recovery of protein synthesis after heat shock: Prior heat treatment affects the ability of cells to translate mRNA. Proc Natl Acad Sci USA 78:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Shiu RPC, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis of glucose deprivation. Cell 11:941–947

    Article  PubMed  CAS  Google Scholar 

  • Riabowol KT, Mizzen LA, Welch WJ (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242:433–436

    Article  PubMed  CAS  Google Scholar 

  • Rose DW, Wettenhall REH, Kudlicki W, Kramer G, Hardesty B (1987) The 90 kilodalton peptide of the heme-regulated el£2a kinase has sequence similarity with the 90 kilodalton heat shock protein. Biochemistry 26:6583–6587

    Article  PubMed  CAS  Google Scholar 

  • Rose DW, Welch WJ, Kramer G, Hardesty B (1989a) Possible involvement of the 90-kDa heat shock protein in the regulation of protein synthesis. J Biol Chem 264:6239–6244

    PubMed  CAS  Google Scholar 

  • Rose MD, Misra LM, Vogel JP (1989b) KAR2, a karyogamy gene, is the yeast homolog of the mammalian BÍP/GRP78 gene. Cell 57:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Ross W (1985) DNA topoisomerases as targets for cancer therapy. Biochem Pharmacol 34:4191–4195

    Article  PubMed  CAS  Google Scholar 

  • Roti-Roti JL, Laszlo A (1988) The effects of hyperthermia in cellular macromolecules. Hyperthermia Oncol 1:13–56

    Google Scholar 

  • Sadis S, Hickey E, Weber LA (1988) Effects of heat shock on RNA metabolism in HeLa Cells. J Cell Physiol 135:377–386

    Article  PubMed  CAS  Google Scholar 

  • Sanchez ER, Meshinchi S, Tienrungroj W, Schlesinger MJ, Toff DO, Prott WB (1987) Relationship of the 90 kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor. J Biol Chem 262:6986–6991

    PubMed  CAS  Google Scholar 

  • Sciandra JJ, Subjeck JR (1983) The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem 258:12091–12093

    PubMed  CAS  Google Scholar 

  • Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44:5288–5294

    Google Scholar 

  • Shen J, Hughes C, Chao C, Cai J, Bartels C, Gessner T, Subjeck J (1987) Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci USA 84:3278–3282

    Article  PubMed  CAS  Google Scholar 

  • Shen JW, Subjeck JR, Lock RB, Ross W (1989) Depletion of topoisomerase II from isolated nuclei during a glucose regulated stress response. Mol Cell Biol 9:3284–3291

    PubMed  CAS  Google Scholar 

  • Sherwood SW, Daggnet AS, Shimke RT (1987) Interaction of hyperthermia and metabolic inhibitors on the induction of chromosome damage in Chinese hamster ovary cells. Cancer Res 47:3584–3588

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1987) The glucose regulated protein grp94 is related to the heat shock protein hsp90. J Mol Biol 194:341–344

    Article  PubMed  CAS  Google Scholar 

  • Stevenson MA, Calderwood SK, Hahn GM (1987) Effect of hyperthermia (45 °C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance. Cancer Res 47:3712–3717

    PubMed  CAS  Google Scholar 

  • Subjeck JR, Shyy T-T (1986) Stress protein systems of mammalian cells. Am J Physiol 250 (Cell Physiol 19):C1-C17

    PubMed  CAS  Google Scholar 

  • Subjeck JR, Sciandra JJ, Johnson JR (1982) Heat shock proteins and thermotolerance: A comparison of induction kinetics. Br J Radiol 55:127–131

    Article  Google Scholar 

  • Subjeck JR, Shyy T-T, Shen JW, Johnson RJ (1983) Association between the mammalian 110,000 dalton heat shock protein and nucleoli. J Cell Biol 97:1389–1295

    Article  PubMed  CAS  Google Scholar 

  • Taub ML, Syracuse JA, Cai JW, Fiorella P, Subjeck JR (1989) Glucose deprivation results in the induction of glucose-regulated proteins and domes in MDCK monolayers in hormonally defined serum free medium. Exp Cell Res 182:105–113

    Article  PubMed  CAS  Google Scholar 

  • Tenner A, Zeig J, Scheffler IE (1977) Glycoprotein synthesis in a temperature-sensitive Chinese hamster cell cycle mutant. J Cell Physiol 90:145–160

    Article  PubMed  CAS  Google Scholar 

  • Tomosovic (1989) Functional aspects of the mammalian heat-stress protein response. Life Chem Rep 7:33–63

    Google Scholar 

  • Ungewickel E (1985) The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J 4:3385–3391

    Google Scholar 

  • Watowich S, Morimoto RJ (1988) Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol Cell Biol 8:393–405

    PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1985) Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol Cell Biol 5:1229–1237

    PubMed  CAS  Google Scholar 

  • Welch WJ, Suhan JP (1985) Morphological studies of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton and nucleoli, and appearance of intranuclear actin filaments in fat fibroblasts after heat shock. J Cell Biol 101:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Whelen SA, Hightower LE (1985) Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J Cell Physiol 125:251–258

    Article  Google Scholar 

  • Wu BJ, Morimoto RJ (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82:6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Yaraha I, Iida H, Koyasu S (1986) A heat shock-resistant variant of Chinese hamster cell line constitutively expresses heat shock protein of M 90,000 at high level. Cell Struct Funct 11:65–73

    Article  Google Scholar 

  • Zhang JR, Shen JW, Subjeck JR (1990) Chronic anoxia leads to a complex of glucose regulated proteins. Proc 38th Ann Meet Radiat Res Soc, New Orleans, Louisiana, April 7, 1990 (Abstr)

    Google Scholar 

  • Ziemiecki A, Catelli M-G, Joab I, Litwack G (1986) Association of the heat shock protein hsp90 with steroid hormone receptors and tyrosine kinase oncogene products. Biochem Biophys Res Commun 138:1298–1307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Black, A.R., Subjeck, J.R. (1990). Mechanisms of Stress-Induced Thermo- and Chemotolerances. In: Schlesinger, M.J., Santoro, M.G., Garaci, E. (eds) Stress Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75815-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75815-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75817-1

  • Online ISBN: 978-3-642-75815-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics