Advertisement

Detection in Gradient High-Performance Liquid Chromatography

  • Gottfried Glöckner

Abstract

In gradient elution, detection requires quantitative measurement of the sample components in an eluent whose composition and, hence, physical properties alter in the course of the analysis. Even solvent combinations purposefully selected with respect to a certain property, e.g. “iso-refractive” solvents, cannot ensure proper measurements of small solute concentrations by detectors which monitore a bulk property of the mobile phase plus the solute.

Keywords

Light Trap Supercritical Fluid Chromatography Gradient HPLC Ethylene Oxide Oligomer Sedimentation Field Flow Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeung ES (1989) LC-GC International 2: 2/38Google Scholar
  2. 2.
    Scott RPW (1986) Liquid chromatography detectors, 2nd edn, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Yeung ES (1986) (ed), Detectors for liquid chromatography, John Wiley, New YorkGoogle Scholar
  4. 4.
    Evans CE, Shabushnig JG, McGuffin VL (1988) J Chromatogr 459: 119CrossRefGoogle Scholar
  5. 5.
    Little JN, Fallick GJ (1975) J Chromatogr 112: 389CrossRefGoogle Scholar
  6. 6.
    Peck K, Morris MD (1988) J Chromatogr 448: 193CrossRefGoogle Scholar
  7. 7.
    Sato H, Takeuchi H, Tanaka Y (1986) Macromolecules 19: 2613CrossRefGoogle Scholar
  8. 8.
    Shafer KH, Pentoney SL, Griffiths PR (1984) J High Resol Chromatogr, Chromatogr Commun 7:707CrossRefGoogle Scholar
  9. 9.
    Fujimoto C, Hirata YH, Jinno K (1985) J Chromatogr 332: 47CrossRefGoogle Scholar
  10. 10.
    Pentoney SL, Shafer KH, Griffiths PR (1986) J Chromatogr Sci 24: 230Google Scholar
  11. 11.
    Shafer KH, Griffiths PR, Pentoney SL, Fuoco R (1986) J High Resol Chromatogr, Chromatogr Commun 9: 168CrossRefGoogle Scholar
  12. 12.
    Lloyd JBF (1986) J Chromatogr 351: 323CrossRefGoogle Scholar
  13. 13.
    Frei RW, Lawrence JF (1981/82) (eds) Chemical derivatization in analytical chemistry, Plenum, New YorkGoogle Scholar
  14. 14.
    Brinkman UA Th, Frei RW, Lingeman H (1989) J Chromatogr 492: 251CrossRefGoogle Scholar
  15. 15.
    Poznjak TI, Lisicyn D, Novikov DD, D’jackovskij FS (1977) Vysokomolekularnye Soedinenja, Ser A, 19: 1168Google Scholar
  16. 16.
    Poznjak TI, Lisicyn D, Novikov DD, Berlin AA, D’jackovskij FS, Procuchan JuA, Sangalov, JuA, Minsker KS (1980) Vysokomolekularnye Soedinenja, Ser A 22: 1424Google Scholar
  17. 17.
    Jorgenson JW, Smith SL, Novotny M (1977) J Chromatogr 142: 233CrossRefGoogle Scholar
  18. 18.
    Tappan DV (1966) Anal Biochem 14: 171CrossRefGoogle Scholar
  19. 19.
    Haahti EOA, Nikkari T (1963) Acta Chem Scand 17: 2565CrossRefGoogle Scholar
  20. 20.
    James AT, Ravenhill JR, Scott RPW (1964) Chem Ind 18: 746Google Scholar
  21. 21.
    Karmen A (1966) Anal Chem 38: 286CrossRefGoogle Scholar
  22. 22.
    Maggs RJ (1968) Chromatographia 1: 43CrossRefGoogle Scholar
  23. 23.
    Privett OS, Erdahl WL (1978) Anal Biochem 84: 449CrossRefGoogle Scholar
  24. 24.
    Stolyhwo A, Privett OS, Erdahl WL (1973) J Chromatogr Sci 11: 263Google Scholar
  25. 25.
    Tracor 945 LC/FID, Tracor Instruments, Austin (Texas), USA US Patents # 4,271,022 and 4,215,090Google Scholar
  26. 26.
    Pye LCM2 Liquid Chromatograph, PYE UNICAM Ltd, Cambridge, UK, (1661/7.5 m/10.71)Google Scholar
  27. 27.
    Scott RPW, Lawrence JG (1970) J Chromatogr Sci 8: 65Google Scholar
  28. 28.
    Pye Liquid Chromatograph Systems, Cat No 14001,002,003, PYE UNICAM Ltd, Cambridge, UK, (83/1.31/2 M/9.69)Google Scholar
  29. 29.
    van Dijk JH (1972) J Chromatogr Sci 10: 31Google Scholar
  30. 30.
    Yang L, Fergusson GJ, Vestal ML (1984) Anal Chem 56: 2632CrossRefGoogle Scholar
  31. 31.
    Veening H, Tock PPH, Kraak JC, Poppe H (1986) J Chromatogr 352: 345CrossRefGoogle Scholar
  32. 32.
    McClure JD (1982) J Amer Oil Chemists’ Soc 59: 364CrossRefGoogle Scholar
  33. 33.
    Smith LA, Norman HA, Cho SH, Thompson GA (1985) J Chromatogr 346: 291CrossRefGoogle Scholar
  34. 34.
    Norman HA, St John JB (1986) J Lipid Res 27: 1104Google Scholar
  35. 35.
    Maxwell RJ, Nungesser EH, Marmer WN, Foglia TA (1987) LC-GC International 1: 56Google Scholar
  36. 36.
    Ford DL, Kennard W (1966) J Oil Colour Chem Assoc 49: 299Google Scholar
  37. 37.
    Charlesworth JM (1978) Anal Chem 50: 1414CrossRefGoogle Scholar
  38. 38.
    Macrae R, Dick J (1981) J Chromatogr 210: 138CrossRefGoogle Scholar
  39. 39.
    Stolyhwo A, Colin H, Guiochon G (1983) J Chromatogr 265: 1CrossRefGoogle Scholar
  40. 40.
    Stolyhwo A, Colin H, Martin M, Guiochon G (1984) J Chromatogr 288: 253CrossRefGoogle Scholar
  41. 41.
    Stolyhwo A, Martin M, Guiochon G (1987) J Liquid Chromatogr 10: 1237CrossRefGoogle Scholar
  42. 42.
    Guiochon G, Moysan A, Holley Ch (1988) J Liquid Chromatogr 11: 2547CrossRefGoogle Scholar
  43. 43.
    Model 750/14, Applied Chromatography Systems Limited, Macclesfield, Cheshire, UK; Zinsser Analytic, Frankfurt/Main, BRD; Peris Industries, State College, Pennsylvania, USAGoogle Scholar
  44. 44.
    Turner B (1986) Laboratory Practice 55: 35Google Scholar
  45. 45.
    Mourey TH, Oppenheimer LE (1984) Anal Chem 56: 2427CrossRefGoogle Scholar
  46. 46.
    Schultz R (1989) Thesis, University of SaarbrückenGoogle Scholar
  47. 47.
    Oppenheimer LE, Mourey TH (1985) J Chromatogr 323: 297CrossRefGoogle Scholar
  48. 48.
    Bitron MD (1955) Ind Eng Chem 47: 23CrossRefGoogle Scholar
  49. 49.
    Nukiyama S, Tanasawa Y (1938) Trans Soc Mech Eng Japan 4: 86Google Scholar
  50. 49a.
    Nukiyama S, Tanasawa Y (1938) Trans Soc Mech Eng Japan 4: 138CrossRefGoogle Scholar
  51. 50.
    Nukiyama S, Tanasawa Y (1939) Trans Soc Mech Eng Japan 5: 63Google Scholar
  52. 50a.
    Nukiyama S, Tanasawa Y (1939) Trans Soc Mech Eng Japan 5: 68Google Scholar
  53. 51.
    Nukiyama S, Tanasawa Y (1940) Trans Soc Mech Eng Japan 6: 117Google Scholar
  54. 52.
    Bear GR (1988) J Chromatogr 459: 91CrossRefGoogle Scholar
  55. 53.
    Robinson JL, Macrae R (1984) J Chromatogr 303: 386CrossRefGoogle Scholar
  56. 54.
    Christie WW (1986) J Chromatogr 361: 396CrossRefGoogle Scholar
  57. 55.
    Sortirhos N, Thorngen C, Herslof B (1985) J Chromatogr 331: 313CrossRefGoogle Scholar
  58. 56.
    Robinson JL, Tsimidou M, Macrae R (1985) J Chromatogr 324: 35CrossRefGoogle Scholar
  59. 57.
    Grossberger T, Rothschild E (1989) LC-GC International 2/7 (1989) 44 and LC-GC 7: 439Google Scholar
  60. 58.
    Burns ID, Jones DA Unilever Research, Sharnbrook, UK, (Appl Chrom Systems, Application Bulletin No 60)Google Scholar
  61. 59.
    Macrae R, Trugo LC, Dick J (1982) Chromatographia 15: 476CrossRefGoogle Scholar
  62. 60.
    Bartle KD, Mulligan MJ, Taylor N, Martin TG, Snape CE (1984) Fuel 63: 1556CrossRefGoogle Scholar
  63. 61.
    Lafosse M, Dreux M, Morin-Allory L (1987) J Chromatogr 404: 95CrossRefGoogle Scholar
  64. 62.
    Coulombe S (1988) J Chromatogr Sci 26: 1Google Scholar
  65. 63.
    Smith BR (1976) Rubber Chem Technol 49: 278CrossRefGoogle Scholar
  66. 64.
    Huang SS, Barth HG (1985) Soc Plastics Engineers, Annual Techn Conf, Techn Papers 277Google Scholar
  67. 65.
    Mourey TH (1986) J Chromatogr 357: 101CrossRefGoogle Scholar
  68. 66.
    Augenstein M, Stickler M (1990) Makromol Chem 191: 415CrossRefGoogle Scholar
  69. 67.
    Oppenheimer LE, Mourey TH (1984) J Chromatogr 298: 217CrossRefGoogle Scholar
  70. 68.
    Lafosse M, Herbreteau B, Dreux M, Morin-Allory L (1989) J Chromatogr 472: 209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Gottfried Glöckner
    • 1
  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations