Advertisement

The Green’s Function Method in the Surface Lattice Dynamics of Ionic Crystals

  • G. Benedek
  • L. Miglio
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 21)

Abstract

The mathematical technique for studying the dynamics of perturbed systems, known as the Green’s function (GF) method, was first applied to solid state problems by Lifshitz [3.1] and Koster andSlater [3.2]. They have stimulated the development of the GF method as a powerful tool in the quantum theory of scattering [3.3–5]. Although the general formulation of the GF method in solid state physics has become a textbook subject [3.6’8], only in recent decades has the method been extensively used in the dynamics of real systems, such as solids with defects, disorder, or boundary surfaces [3.9,10].

Keywords

Rayleigh Wave Surface Mode Electron Energy Loss Spectroscopy Symmetry Direction Bulk Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    I.M. Lifshitz: Nuovo Cimento Suppl. 3, 732 (1956) and references quoted thereinGoogle Scholar
  2. 3.2
    G.F. Koster, I.C. Slater: Phys. Rev. 94, 1392 (1954); 95, 1167 (1954)CrossRefGoogle Scholar
  3. 3.3
    J. Callaway: J. Math. Phys. 5, 783 (1964); Phys. Rev. 154, 515 (1967)CrossRefGoogle Scholar
  4. 3.4
    R.A. Brown: Phys. Rev. 156, 889 (1967)CrossRefGoogle Scholar
  5. 3.5
    M.V. Klein: In Physics of Color Centers, ed. by W.B. Fowler (Academic, New York 1968)Google Scholar
  6. 3.6
    E.N. Economu: Green’s Function in Quantum Physics (Springer, Berlin, Heidelberg 1978)Google Scholar
  7. 3.7
    S. Doniach, E.H. Sandheimer: Green’s Function for Solid State Phyisicists (Benjamin, London 1974)Google Scholar
  8. 3.8
    G. Rickeyzen:Green’s Functions and Condensed Matter (Academic, New York 1980)Google Scholar
  9. 3.9
    A.A. Maradudin, E.W. Montroll, G.M. Weiss, I.P. Ipatova: Theory of Lattice Dynamics in the Harmonic Approximation, Suppl. 3 to Solid State Physics (Academic, New York 1971)Google Scholar
  10. H. Bilz, D. Strauch, R.K. Wehner: In Encyclopedia of Physics, Vol. XXV/2d (Light and Matter Id) (Springer, Berlin, Heidelberg 1984)Google Scholar
  11. 3.11
    G. Brusdeylins, R.B. Doak, J.P. Toennies: Phys. Rev. B27, 3662 (1983)Google Scholar
  12. 3.12
    S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills: Phys. Rev. Lett. 50,518 (1981);CrossRefGoogle Scholar
  13. 3.13
    JJM. Szeftel, S. Lehwald, H. Ibach, T.S. Rahman, J.E. Black, D.L. Mills: Phys. Rev. Lett. 51, 268 (1983)CrossRefGoogle Scholar
  14. 3.14
    G. Benedek: Physica 127B, 59 (1984)Google Scholar
  15. 3.15
    A.A. Maradudin, J. Melngailis: Phys. Rev. 133, A1188 (1964)CrossRefGoogle Scholar
  16. 3.16
    L. Dobrzynski, G. Leman: J. Phys. (Paris) 30, 116 (1969)Google Scholar
  17. 3.17
    S.W. Musser, KJH. Rieder: Phys. Rev. B2, 3034 (1970)Google Scholar
  18. 3.18
    W. Goldammer, W. Ludwig, W. Zierau, C. Falter: Surf. Sci. 141, 139 (1984);CrossRefGoogle Scholar
  19. 3.19
    W. Zierau, W. Goldammer, C. Falter, W. Ludwig: Proc. Int. Conf. on Superlattices, Urbana, 111. (USA) 1984Google Scholar
  20. 3.20
    J.E. Black, B. Lacks, D.L. Mills: Phys. Rev. B22, 1818 (1980)Google Scholar
  21. 3.21
    F. Garcia Moliner: Ann. Phys. (Paris) 2, 179 (1977)Google Scholar
  22. 3.22
    RJs. Allen: Surf. Sci. 76, 91 (1978)CrossRefGoogle Scholar
  23. 3.23
    G. Armand: Phys. Rev. B14, 2218 (1976)Google Scholar
  24. 3.24
    G. Benedek: Phys. Stat. Sol. B58, 661 (1973)Google Scholar
  25. 3.25
    G. Benedek: Surf. Sci. 61, 603 (1976)CrossRefGoogle Scholar
  26. 3.26
    G. Benedek, L. Miglio: In Ab Initio Calculation of Phonon Spectra, ed. by J.T. Devreese, V.E. van Doren, P.E. van Camp (Plenum, New York 1983) p.215CrossRefGoogle Scholar
  27. 3.27
    G. Platero, V.R. Velasco, F. Garcia Moliner, G. Benedek, L. Miglio: Surf. Sci. 143, 243 (1984)CrossRefGoogle Scholar
  28. 3.28
    Owing to this special meaning the GF is often defined with opposite sign. Here we keep to the definition given in many classic mathematics texts, e.g., I.G. Petrovsky: Lectures on Partial Differential Equations (Interscience, New York 1954) §24. This has been adopted in Bilz, Strauch and Wehner’s handbook [3.10] and also in our previous papersGoogle Scholar
  29. 3.29
    A. Messiah: Mécanique Quantique (Dunod, Paris 1959)Google Scholar
  30. 3.30
    J.M. Ziman:Elements of Advanced Quantum Theory (Cambridge University Press, Cambridge 1969)Google Scholar
  31. 3.31
    We note that the operator 11 is a function of the equilibrium positions. Only when they do not change by cutting the bands across £ is the operator H the same for <j> and fa. However, the RI condition has been proved to be equivalent to equilibrium condition and therefore it contributes a fictitious force field at the surface, required to equilibrate the surface in the unrelaxed configuration. The relationship between rotational invariance and equilibrium and the effect of elastic relaxation are discussed in [3.24].Google Scholar
  32. 3.32
    Since the eigenvalue in equations (3.45) and (3.49) is multiplied by the mass matrix, qq and Q are not merely frequency densities. They are normalized to 1/s/z, fi being the unit cell reduced massGoogle Scholar
  33. 3.33
    R.E. Allen, GJP. Alldredge, F.W. de Wette: Phys. Rev. B4, 1648, 1661, 1682 (1971); B2, 2570 (1970)Google Scholar
  34. 3.34
    B.G. Dick, Jr. A.W. Overhauser: Phys. Rev. 112, 90 (1958)CrossRefGoogle Scholar
  35. 3.35
    A.D.B. Woods, W. Chochran, BJST. Brockhouse: Phys. Rev. 119, 980 (1960)CrossRefGoogle Scholar
  36. 3.36
    W. Cochran: C.R.C. Critical Reviews in Solid State Sciences 2, 1 (1971)CrossRefGoogle Scholar
  37. 3.37
    This method is developed in C.S. Jayanthi, H. Bilz, W. Kress, G. Benedek: Phys. Rev. Lett. 59, 795 (1987)CrossRefGoogle Scholar
  38. in connection with the surface dynamics of noble metals. An application to the bulk dynamics of these crystals was previously given in C.S. Jayanthi, H. Bilz, W. Kress: In Phonon Physics, ed. by. J. Kollar, N. Kroo, N. Menyhard, T. Siklos (World Scientific, Singapore 1985) p.630Google Scholar
  39. 3.39
    M.S. Daw, MJ. Baskes: Phys. Rev. B 29, 6443 (1984)CrossRefGoogle Scholar
  40. 3.40
    C. Falter, W. Ludwig, A.A. Maradudin, M. Selmke, W. Zierau: Phys. Rev. B 32,6510 (1985);Google Scholar
  41. 3.41
    C. Falter, M. Selmke, W. Ludwig, K. Kunc: Phys. Rev. B32, 6518 (1985)Google Scholar
  42. 3.42
    Y.R. Wang, A.W. Overhauser: Phys. Rev. B 35, 497 (1987); 501 (1987)CrossRefGoogle Scholar
  43. 3.43
    L. Miglio, G. Benedek: In Structure and Dynamics of Surfaces ed. by W. Schommers, P. von Blankenhagen (Springer, Berlin, Heidelberg 1987) p.35Google Scholar
  44. 3.44
    G. Benedek, G.F. Nardelli: Phys. Rev. 155, 1004 (1967)CrossRefGoogle Scholar
  45. 3.45
    A.D. Boardman (ed.): Electromagnetic Surface Modes (Wiley, New York 1982)Google Scholar
  46. 3.46
    G. Benedek, G.P. Brivio, L. Miglio, V.R. Velasco: Phys. Rev. B 26, 497 (1982)CrossRefGoogle Scholar
  47. 3.47
    G. Benedek, F. Galimberti: Surf. Sci. 71, 87 (1978); 118, 713 (1982)Google Scholar
  48. 3.48
    U. Schröder: Solid State Commun. 4, 347 (1966);CrossRefGoogle Scholar
  49. 3.49
    U. Schröder, V. Nüsslein: Phys. Status Solidi 21, 309 (1967)CrossRefGoogle Scholar
  50. 3.50
    T.S. Chen, F.W. de Wette, G.P. Alldredge: Phys. Rev. B15, 1167 (1977) and references thereinGoogle Scholar
  51. 3.51
    W. Kress, F.W. de Wette, A.D. Kulkarni, U. Schröder: Phys. Rev. B 35, 2467 (1987)CrossRefGoogle Scholar
  52. 3.52
    G.P. Alldredge: Phys. Rev. Lett. 41A, 281 (1972)Google Scholar
  53. 3.53
    G. Benedek, L. Miglio, G. Brusdeylins, J.G. Skofronick, J.P. Toennies: Phys. Rev. B 35, 6593 (1987)Google Scholar
  54. 3.54
    The sagittal resonance is also found in NaCl [3.39] where the mass difference is appreciable. F.W. de Wette, W. Kress and U. Schröder [Phys. Rev. B 33,2835 (1986)] have proposed another mechanism for folding based on the TA-TO hybridization of bulk modes, which may work also in crystals with different masses. Since the pure geometrical condition may not be sufficient for folding to be observed (even in NaF not all modes do show evident folded companions), the hybridization mechanism may be invoked. A discussion is given in Chap. 5 of the present book. It should be noted that in KCl and NaCl the folded branch S% apparently extends up to the zone center [3.39], where it takes the character of the so-called structure-induced surface resonance recently discussed by JA. Stroscio, M. Persson, S.R. Bare, W. Ho: Phys. Rev. Lett. 54, 1428 (1985), for metal surfaces. Such a resonant mode was actually found in the original GF calculation of 1973 [3.22] and stems from a secondary lower edge of a bulk band associated with a relative minimum of the dispersion relation in the 2 directionGoogle Scholar
  55. 3.55
    A.A. Lucas: J. Chem. Phys. 48, 3156 (1968)CrossRefGoogle Scholar
  56. 3.56
    RJF. Wallis: Phys. Rev. 116, 302 (1959)CrossRefGoogle Scholar
  57. 3.57
    F.W. de Wette: InLattice Dynamics, ed. by M. Balkanski (Flammarion Sciences, Paris 1978) p.275Google Scholar
  58. 3.58
    G. Lakshmi, F.W. de Wette: Phys. Rev. 22, 5009 (1980)CrossRefGoogle Scholar
  59. 3.59
    G. Brusdeylins, R.B. Doak, J.P. Toennies: Phys. Rev. Lett. 44, 1417 (1980); 46, 437 (1981)CrossRefGoogle Scholar
  60. 3.60
    G. Benedek, J.P. Toennies, R.B. Doak: Phys. Rev. B28, 7277 (1983)Google Scholar
  61. 3.61
    G. Bracco, E. Cavanna, A. Gussoni, C. Salvo, R. Tatarek, S. Terreni, F. Tommasini: Vuoto Sci. Teen. 16 (1986);Google Scholar
  62. 3.62
    G. Bracco, M. D’Avanzo, C. Salvo, R. Tatarek, S. Terreni, F. Tommasini: Surface Sci. 189/190, 684 (1987)CrossRefGoogle Scholar
  63. 3.63
    E.R. Cowley, J.A. Barker: Phys. Rev. B 28, 3124 (1983)CrossRefGoogle Scholar
  64. 3.64
    F.W. de Wette, W. Kress, U. Schröder: Phys. Rev. B 32, 4143 (1985)CrossRefGoogle Scholar
  65. 3.65
    G. Brusdeylins, R. Rechsteiner, J.G. Skofronick, JJP. Toennis, G. Benedek, L. Miglio: Phys. Rev. Lett. 54, 466 (1985)CrossRefGoogle Scholar
  66. 3.66
    J.L Longueville, P.A. Thiry, J J. Pireaux, R. Candano: Communicat. to the 10th European Conference on Surface Science, Bologna 5–8 Sept. 1988Google Scholar
  67. 3.67
    RE. Black, F.C. Shanes, R.F. Wallis: Surf. Sci. 133, 199 (1983)CrossRefGoogle Scholar
  68. 3.68
    G. Armand, P. Masri: Surf. Sci. 130, 89 (1983)CrossRefGoogle Scholar
  69. 3.69
    R.B. Doak, U. Harten, J.P. Toennies: Phys. Rev. Lett. 51, 587 (1983)CrossRefGoogle Scholar
  70. 3.70
    G. Armand: Solid State Commun. 48, 261 (1983)CrossRefGoogle Scholar
  71. 3.71
    V. Bortolani, A. Franchini, F. Nizzoli, G. Santoro: Phys. Rev. Lett. 52, 429 (1984)CrossRefGoogle Scholar
  72. 3.72
    M. Miura, W. Kress, H. Bilz: Z. Phys. B54, 103 (1984)CrossRefGoogle Scholar
  73. 3.73
    G. Benedek, M. Miura, W. Kress, H. Bilz: Phys. Rev. Lett. 52, 1907 (1984)CrossRefGoogle Scholar
  74. 3.74
    C. Oshima, T. Aizawa, M. Wuttig, R. Souda, S. Otani, Y. Ishizawa, H. Ishida, K. Terakura: Phys. Rev. B 36, 7510 (1987)CrossRefGoogle Scholar
  75. 3.75
    C. Oshima, R. Souda, M. Aono, S. Otani, Y. Ishizawa: Phys. Rev. Lett. 56, 2401 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • G. Benedek
  • L. Miglio

There are no affiliations available

Personalised recommendations