Skip to main content

Dislocation Motion Controlled by the Peierls Mechanism

  • Chapter
Dislocation Dynamics and Plasticity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 12))

Abstract

Reflecting the periodicity of the crystal lattice, any dislocation in any crystal has its own intrinsic resistance to glide, because the self-energy of the dislocation changes with the periodicity of the lattice. This periodic potential energy with respect to the dislocation position is called the Peierls potential, after the researcher who first estimated this potential theoretically for a simple model [5.1]. The stress necessary for the dislocation to surmount this potential, without the aid of thermal energy, is called the Peierls stress. This chapter is concerned with theoretical treatments of the dislocation glide controlled by the Peierls potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Peieris: Proc. Phys. Soc. London 52, 34 (1940)

    Article  Google Scholar 

  2. F.R.N. Nabarro: Theory of Crystal Dislocations ( Clarendon Press, Oxford 1967 ) p. 175

    Google Scholar 

  3. A. Seeger: Philos. Mag. 1, 651 (1956)

    Article  ADS  Google Scholar 

  4. A. Seeger, P. Schiller: Acta Metall. 10, 348 (1962)

    Article  Google Scholar 

  5. J.P. Hirth, J. Lothe: Theory of Dislocations ( McGraw-Hill, New York 1968 )

    Google Scholar 

  6. J.E. Dorn, S. Rajnak: Trans. Met. Soc. AIME 230, 1052 (1964)

    Google Scholar 

  7. V. Celli, M. Kabler, T. Ninomiya, R. Thomson: Phys. Rev. 131, 58 (1963)

    Article  ADS  Google Scholar 

  8. P. Guyot, J.E. Dorn: Can. J. Phys. 45, 983 (1967)

    Article  ADS  Google Scholar 

  9. T. Mori, M. Kato: Philos. Mag. A 43, 1315 (1981)

    Article  ADS  Google Scholar 

  10. R.I. Arsenault: Acta Metall. 15, 501 (1967)

    Article  Google Scholar 

  11. K. Ono, A.W. Sommer: Metall. Trans. 1, 877 (1970)

    Google Scholar 

  12. A. Sato, M. Meshii: Acta Metall. 21, 753 (1973)

    Article  Google Scholar 

  13. Y. Kawata, S. Ishioka: Philos. Mag. A 48, 921 (1983)

    Article  ADS  Google Scholar 

  14. J. Lothe, J.P. Hirth: Phys. Rev. 115, 543 (1959)

    Article  ADS  MATH  Google Scholar 

  15. A. Seeger, P. Schiller: In Physical Acoustics, Vol. III A, ed. by W.P. Mason ( Academic, New York 1966 ) p. 361

    Google Scholar 

  16. J. Castaing, P. Veyssiere, L.P. Kubin, J. Rabier: Philos. Mag. A 44, 1407 (1981)

    Article  ADS  Google Scholar 

  17. F. Louchet: Philos. Mag. A 43, 1289 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, T., Takeuchi, S., Yoshinaga, H. (1991). Dislocation Motion Controlled by the Peierls Mechanism. In: Dislocation Dynamics and Plasticity. Springer Series in Materials Science, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75774-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75774-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75776-1

  • Online ISBN: 978-3-642-75774-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics