Dislocation Motion in the Field of a Random Distribution of Point Obstacles: Solution Hardening

  • Taira Suzuki
  • Shin Takeuchi
  • Hideo Yoshinaga
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 12)

Abstract

Deformation rates of crystals, according to many experimental and theoretical studies, are controlled by thermal activation processes for surmounting various barriers. So far, the problems have been discussed using the following implicit solutions: (1) the processes are quasi-static and do not involve any dynamical aspects; (2) the frictional forces produced in materials are neither extremely large nor small. If the frictional forces due to the material are very small, the hypothesis (1) does not hold any more. This is the case of deformation of superconductors as described in the next chapter. Weertman [3.1] dissussed creep of ice on the basis of visco-elastic deformation theory developed by Eshelby [3.2]. According to ultrasonic attenuation experiments [3.3], B is 107 times as large as that for metals. In this case, although the frictional force is still proportional to the velocity of dislocations, the time of motion in the area between barriers becomes longer than that needed to surmount each of them. In other words, the barriers are of no importance for the discussion of the rate of deformation. Accordingly, such a linear visco-elastic deformation may be put aside in the present discussion. As for studies of plastic deformation of crystalline materials, the past treatments of the case, where the frictional forces are very small, should be carefully reconsidered. In the present chapter, we discuss problems within the above framework, (1) and (2), and those outside of this will be discussed in the next chapter.

Keywords

Nickel Attenuation Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    J. Weertman: Physics and Chemistry of Ice, ed. by E.Whalley, S.J. Jones, L.W. Gold ( Royal Society of Canada, Ottawa 1973)Google Scholar
  2. 3.2
    J.D. Eshelby: Philos. Mag. 6, 953 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.3
    P. Schiller: Z. Phys. 153, 1 (1958)ADSCrossRefGoogle Scholar
  4. 3.4
    T. Suzuki: In Dislocation Dynamics, ed. by A.R. Rosenfield,G.T. Hahn, A.L. Bement, Jr., R.I. Jaffee ( McGraw-Hill, New York 1968 ) p. 551Google Scholar
  5. 3.
    T. Suzuki, T. Ishii: Proc. hit. Conf. on Strength of Metals and Alloys, Trans. Jpn. Inst. Met.9, Suppl., 687 (1967/68)Google Scholar
  6. 3.6
    A.A. Hendrickson, M.E. Fine: Trans. AIME 221, 103 (1961)Google Scholar
  7. 3.7
    Z.S. Basinski, D. Dove: See S.J. Basinski, Z.S. Basinski: In Dislocations in Solids, Vol. 4, ed. by F.R.N. Nabarro ( North-Holland, Amsterdam 1979) p. 261Google Scholar
  8. 3.8
    T. Suzuki, Jpn. J. Appl. Phys. 20, 449 (1981)ADSCrossRefGoogle Scholar
  9. 3.9
    K. Kamada, I. Yoshizawa: J. Phys. Soc. Jpn. 31, 1056 (1971)ADSCrossRefGoogle Scholar
  10. 3.10
    N. Büttner, E. Nembach: Z. Metallkd. 76, 82 (1984)Google Scholar
  11. 3.11
    H. Suga, Y. Sueki, M. Higuchi, T. Imura: Jpn. J. Appl. Phys. 14, 379 (1976)ADSCrossRefGoogle Scholar
  12. 3.12
    F. Iida, T. Suzuki, E. Kuramoto, S. Takeuchi: Acta Metall. 27, 637 (1978)Google Scholar
  13. 3.13
    T. Kan, P. Haasen: Z. Metallkd. 61, 355 (1970)Google Scholar
  14. 3.14
    P. Jax, P. Kratochvil, P. Haasen: Acta Metall. 18, 237 (1970)CrossRefGoogle Scholar
  15. 3.15
    G. Kostorz, P. Haasen: Z. Metallkd. 60, 26 (1969)Google Scholar
  16. 3.16
    R.A. Kioske, M.E. Fine: Trans. AIME 245, 217 (1969)Google Scholar
  17. 3.17
    P. Haasen: In Dislocations in Solids, Vol. 4, ed. by F.R.N. Nabarro ( Noth-Holland, Amsterdam 1979 ), p. 155Google Scholar
  18. 3.
    H. Suzuki: In Dislocations and Mechanical Properties of ystals,ed. by J.C. Fisher, W.G. Johnston, R. Thomson, T. Vreeland, Jr. (Wiley, New York 1956/57)p.361Google Scholar
  19. 3.19
    R.L. Fleischer: Acta Metall. 11, 203 (1963)CrossRefGoogle Scholar
  20. 3.20
    J. Friedel: Dislocations ( Pergamon, New York 1964 ) MATHGoogle Scholar
  21. 3.21
    T. Suzuki, T. Ishii: In Physics of Strength and Plasticity, ed. by A.S. Argon ( MIT Press, Cambridge, MA 1969 ) p. 687Google Scholar
  22. 3.22
    N.F. Mott, F.R.N. Nabarro: Strength of Solids (Phys. Soc., London 1947) p.1 3.23 R. Labusch: Phys. Status Solidi 41, 659 (1970)CrossRefGoogle Scholar
  23. 3.24
    B.R. Riddhagni, R.M. Asimov: J. Appl. Phys. 39, 4144 (1968)ADSCrossRefGoogle Scholar
  24. 3.25
    R. Labusch, J.S. Ahearn, G. Grange, P. Haasen: Rate Processes in Plastic Deformation, AIME Symp. Series ( Plenum, New York 1975 )Google Scholar
  25. 3.26
    R.W. Balluffi, A.V. Granato: In Dislocations in Solids, Vol.4, ed by F.R.N. Nabarro ( North-Holland, Amsterdam 1979 ) p. 1Google Scholar
  26. 3.27
    R.B. Schwarz, R. Labusch: J. Appl. Phys. 49, 5174 (1978)ADSCrossRefGoogle Scholar
  27. 3.28
    U.F. Kocks, A.S. Argon, M.F. Ashby: Thermodynamics and Kinetics of Slip ( Pergamon, New York 1975 )Google Scholar
  28. 3.29
    A.J.E. Foreman, MJ. Makin: Philos. Mag. 14, 911 (1966)ADSCrossRefGoogle Scholar
  29. 3.30
    T. Suzuki: Jpn. J. Appl. Phys. 20, 449 (1981)ADSCrossRefGoogle Scholar
  30. 3.31
    E. Orowan: Symposium on Internal Stresses (Inst. Metals,London 1948) p.451 3.32 R.L. Fleischer: Acta Metall. 9, 996 (1961)CrossRefGoogle Scholar
  31. 3.33
    F.R.N. Nabarro:Theory of Crystal Dislocation ( Clarendon,xford 1967 )Google Scholar
  32. 3.34
    A. Seeger, P. Haasen: Philos. Mag. 3, 470 (1958)ADSGoogle Scholar
  33. 3.35
    J. Saxl: Cz. J. Phys. B 14, 381 (1964)ADSCrossRefGoogle Scholar
  34. 3.
    F.R.N. Nabarro: In The Physics of Metals,Vol.2, ed. by P.B irsch (Cambridge University Press, Cambridge 1975) Chap.4Google Scholar
  35. 3.37
    S. Takeuchi: Scr. Metall. 2, 481 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Taira Suzuki
    • 1
  • Shin Takeuchi
    • 2
  • Hideo Yoshinaga
    • 3
  1. 1.Department of Materials Science and Technology, Faculty of Industrial Science and TechnologyUniversity of TokyoChiba 278Japan
  2. 2.Institute for Solid State PhysicsUniversity of TokyoMinato-Ku, Tokyo 106Japan
  3. 3.Graduate School of Engineering SciencesKyushu UniversityKasuga-shi, Fukuoka 816Japan

Personalised recommendations