Skip to main content

Interconnection Networks for Highly Parallel Supercomputing Architectures

  • Conference paper
Supercomputing

Part of the book series: NATO ASI Series ((NATO ASI F,volume 62))

  • 71 Accesses

Abstract

This paper treats (Multiple) Interconnection Networks (MINs), dealing in particular with their adoption in supercomputing architectures. The main properties and characteristics of MINs are recalled and some typical parallel computer architectures adopting MINs are summarized. Two main application classes of MINs are considered: parallel computer systems implemented by connecting together powerful processors and large shared memories, and dedicated supercomputing structures directly implementing highly parallel algorithms. For both application classes, the adoption of fault tolerance methods is discussed. Fault tolerance can be usefully adopted both to overcome production defects and faults arising during systems working life. Classic approaches to fault tolerance in MINs for parallel computer systems and some recent results in the less known field of fault tolerance in dedicated supercomputing structures are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Adams, H. J. Siegel: “The Extra Stage Cube: a Fault-Tolerant Interconnection Network for Super Systems”, IEEE Trans. Comp., Vol. 31, pp. 443–453, 1982.

    Article  MATH  Google Scholar 

  2. G.B. Adams, H.J. Siegel: “Modifications to Improve the Fault Tolerance of the Extra Stage Cube Interconnection Network”, Proc. IEEE Int’l Conf. Parallel Processing, 1984.

    Google Scholar 

  3. G.B. Adams, D.P. Agrawal, H.J.Siegel: “Fault-Tolerant Multistage Interconnection Networks (A Survey and Comparison of —)”, IEEE Computer, June 1987.

    Google Scholar 

  4. D.P. Agrawal: “Testing and Fault Tolerance of Multistage Interconnection Networks”, IEEE Computer, April 1982.

    Google Scholar 

  5. A. Antola, R. Negrini, M.G. Sami, N. Scarabottolo: “Time-Folding: a Solution for Functional and Fault-Tolerance Reconfiguration of Systolic FFTs”, Proc. 3rd Int’l Conf. on Superc. — ICS-3, Boston, May 1988.

    Google Scholar 

  6. A. Antola, R. Negrini, M.G. Sami, N. Scarabottolo: “Policies for Fault-Tolerance through Mixed Space- and Time- Redundancy in Semi-Systolic FFTs Arrays”, Proc. IEEE Int’l Conf. on Systolic Arrays, San Diego, May 1988.

    Google Scholar 

  7. A. Antola, R. Negrini, N. Scarabottolo: “Arrays for Discrete Fourier Transforms”, Proc. EUSIPCO 88, Grenoble, Sept. 1988.

    Google Scholar 

  8. A. Antola, R. Negrini, M.G. Sami, N. Scarabottolo: “Fault-Tolerance in FFT Arrays: Time-Redundancy Approaches”, Int. Rep. N. 89-16, Dipart. Elettronica, Politecnico di Milano, 1989.

    Google Scholar 

  9. A. Antola, M.G. Sami, D. Sciuto: “Testing Approaches for Flow-Graph Derived FFT Arrays” Proc. Int’l Conf. on Systolic Arrays, Killarney, May 1989.

    Google Scholar 

  10. G. Broomell, J.R. Heath: “Classification Categories and Historical Development of Circuit Switching Topologies”, Computing Surveys, Vol. 15, No. 2, June 1983.

    Google Scholar 

  11. V. Cherkassky, E. Opper, M. Malek: “Reliability and Fault Diagnosis Analysis of Fault-Tolerant Multistage Interconnection Networks”, Proc. IEEE FTCS 14, June 1984.

    Google Scholar 

  12. Y.H. Choi, M. Malek: “A Fault-Tolerant FFT Processor” IEEE Trans. Comp., Vol.37, NO. 5, May 1988.

    Google Scholar 

  13. L. Ciminiera, A. Serra: “A Connecting Network with Fault Tolerance Capabilities”, IEEE Trans. Comp., Vol.35, NO. 6, June 1986.

    Google Scholar 

  14. T.Y. Feng, C.L. Wu: “Fault-Diagnosis for a Class of Multistage Interconnection Networks”, IEEE Trans. Comp., Vol.30, NO. 10, October 1981.

    Google Scholar 

  15. P.D. Franzon: “Yield Modeling for Fault-Tolerant Arrays”, Proc. Int’l Conf. on Systolic Arrays, Oxford, July 1986.

    Google Scholar 

  16. I. Gazit, M. Malek: “Fault Tolerance Capabilities in Multistage Network Based Multicomputer Systems”, IEEE Trans. Comp., Vol.35, NO. 7, July 1986.

    Google Scholar 

  17. I. Gazit, M. Malek: “Fault Tolerance Capabilities in Multistage Network Based Multicomputer Systems”, IEEE Trans. Comp., Vol.37, NO. 7, July 1988.

    Google Scholar 

  18. M. Jeng, H.J. Siegel: “A Fault-Tolerant Multistage Interconnection Network for Multiprocessor Systems Using Dynamic Redundancy”, Proc. IEEE Conf. Distrib. Computing Systems, 1986.

    Google Scholar 

  19. R.M. Jenevein, T. Mookken: “Traffic Analysis of Rectangular S W-Banyan Networks”, Proc. IEEE Symp. on Computer Architecture, 1988.

    Google Scholar 

  20. J.Y. Jou, J.A. Abraham: “Fault-Tolerant FFT Networks” IEEE Trans. Comp., Vol.37, NO. 5, May 1988.

    Google Scholar 

  21. D.W. Kim, G.J. Lipovski, A. Hartmann, R. Jenevein: “Regular CC-Banyan Networks”, Proc. IEEE Symp. on Computer Architecture, 1988.

    Google Scholar 

  22. V.P. Kumar, S.M. Reddy: “Augmented Shuffle-Exchange Multistage Interconnection Networks”, IEEE Computer, June 1987.

    Google Scholar 

  23. G.J. Lipovski, M. Malek: Parallel Computing — Theory and Comparisons, John Wiley and Sons, New York, 1987.

    Google Scholar 

  24. T.E. Mangir, A. Avizienis: “ Fault-Tolerant Design for VLSI: Effect of Interconnection Requirements on Yield Improvement of VLSI Design”, IEEE Trans. Comp., Vol.31, NO. 7, July 1982.

    Google Scholar 

  25. R. Negrini, M.G. Sami, R.Stefanelli: Fault Tolerance through Reconfiguration in VLSI and WSI Arrays, The MIT Press, Cambridge, 1988.

    Google Scholar 

  26. S.K. Rao, T. Kailath: “Regular Iterative Algorithms and their Implementation on Processor Arrays”, IEEE Proceedings, Vol.76, NO. 3, March 1988.

    Google Scholar 

  27. D.A. Reed, D.C. Grunwald: “The Performance of Multicomputer Interconnection Networks”, IEEE Computer, June 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antola, A., Negrini, R., Sami, M.G., Stefanelli, R. (1990). Interconnection Networks for Highly Parallel Supercomputing Architectures. In: Kowalik, J.S. (eds) Supercomputing. NATO ASI Series, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75771-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75771-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75773-0

  • Online ISBN: 978-3-642-75771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics