Possibilities and Limitations of Radioactive Tracers in Hepatobiliary Studies

  • G. Galli
  • M. Salvatori
  • V. Valenza
Conference paper


The advent of other imaging modalities has modified the role of radioisotopic techniques in liver diseases. For example, the radiocolloid liver scan, once of primary interest in every nuclear medicine center, is losing ground, and it is doubtful that recent improvements in the technique, such as those based on fractals [1], can revitalize the method. Nevertheless, we believe it can still find useful application in two field. One is in the diagnosis of the nature of solid intrahepatic lesions identified by other methods (mostly incidentally during an ultrasound investigation). An uptake of the radiocolloid excludes malignancy and points to the diagnosis of a focal nodular hyperplasia [2, 3]. The colloid examination combined with 99mTc-labeled IDA scintigraphy improves the diagnosis; and IDA uptake indicates that the mass is composed of hepatocytes, and that it is benign or, if malignant, well differentiated [4]. The association of the two examinations can provide a differential diagnosis of the primary tumor according to the criteria in Table 1, with a high degree of accuracy when the focal lesion is larger than 3–4 cm (Fig. 1). The second application is in liver cirrhosis. If a typical pattern is observed, it is pathognomonic for the diagnosis. The examination can be useful in the follow-up and can demonstrate the presence of photopenic lesions suspected of representing the initial stages of a liver carcinoma.


Biliary Atresia Focal Nodular Hyperplasia Radioactive Tracer Bile Reflux Liver Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cargill EB, Barrett HH, Fiete RD, et al. (1989) Liver scan analysis using fractals: a new dimension. In: Schmidt HAE, Buraggi GL (eds) Nuclear medicine: trends and possibilities in nuclear medicine. Schattauer, Stuttgart, pp 404–407Google Scholar
  2. 2.
    Drane WE, Krasicky GA, Johnson DA (1987) Radionuclide imaging of primary tumors and tumor-like conditions of the liver. Clin Nucl Med 12: 569–582PubMedCrossRefGoogle Scholar
  3. 3.
    Welch TJ, Sheedy PF, Johnson CM, et al. (1985) Focal nodular hyperplasia and hepatic adenoma: comparison of angiography, CT, US, and scintigraphy. Radiology 156: 593–595Google Scholar
  4. 4.
    Salvatori M, Valenza V, Ursitti A (1989) A discrepancy in hepatic uptake of 99mTc-IDA and 99mTc-colloid in hepatic adenoma: a case report ( Abstr ). J Nucl Med Allied Sci 33: 200–201Google Scholar
  5. 5.
    Hersdoffer CS, Bezwada WR, Danilewitz MD et al. (1987) Radioisotopic flow scanning for portal blood flow and portal hypertension. Clin Nucl Med 12: 610–613CrossRefGoogle Scholar
  6. 6.
    Calvet X, Pons F, Bruix J, et al. (1988) Technetium 99mDISIDA hepatobiliary agent in diagnosis of hepatocellular carcinoma: relationship between detectability and tumor differentiation. J Nucl Med 29: 1916–1920PubMedGoogle Scholar
  7. 7.
    Morita K, Ono S, Fukunaga M, et al. (1988) Accumulation of N-isopropyl-p- 1231 iodoamphetamine and 99mTc examethyl. Propyleneamine oxine in metastatic hepatocellular carcinoma. J Nucl Med 29: 1460–1462Google Scholar
  8. 8.
    Galli G, Maini CL, Salvatori M (1983) A practical approach to the hepatobiliary kinetics of 99mTc-IDA. Eur J Nucl Med 8: 292–298PubMedGoogle Scholar
  9. 9.
    Galli G, Maini CL, Salvatori M, Valenza V (1986) Analysis of the 99mTc-IDA radiohepatogram by a gamma-variate function: a clinical study. J Nucl Med Allied Sci 30: 117–124PubMedGoogle Scholar
  10. 10.
    Valenza V, Salvatori M, Agnes S, Avolio AW, et al. (1989) Scintigraphic evaluation and monitoring of liver transplant function ( Abstr ). J Nucl Med Allied Sci 33: 227Google Scholar
  11. 11.
    Weissmann HS, Freeman LM (1984) The biliary tract. In: Freeman and Johnson’s (eds) Clinical radionuclide imaging. Grune and Stratton, OrlandoGoogle Scholar
  12. 12.
    Drane WE, Karvelis K, Johnson DA, et al. (1987) Scintigraphic evaluation of duodenogastric reflux problems, pitfalls and technical review. Clin Nucl Med 12: 377–384PubMedCrossRefGoogle Scholar
  13. 13.
    Valenza V, Salvatori M, Doglietto GB, et al. (1989) 99mTc-IDA cholescintigraphy in the study of pylorus preservation in pancreaticoduodenectomy: preliminary reports ( Abstr ). J Nucl Med Allied Sci 33: 229–230Google Scholar
  14. 14.
    Salvatori M, Valenza V, Giordano A, et al. (1985) Functional evaluation of biliary-enteric shunts by 99mTc-IDA quantitative cholescintigraphy ( Abstr ). J Nucl Med Allied Sci 29: 144–145Google Scholar
  15. 15.
    Salvatori M, Valenza V, Costamagna G, et al. (1987) Hepatobiliary nuclear scan and ultrasonography in endoscopically placed transtumoral stents ( Abstr ). J Nucl Med Allied Sci 31: 141–142Google Scholar
  16. 16.
    Engel MA, Marks DS, Sandler MA, Shetty P (1983) Differentiation of focal intrahepatic lesions with 99mTc-red blood cell imaging. Radiology 146: 777–782PubMedGoogle Scholar
  17. 17.
    Siccardi AG, Buraggi GL, Callegaro L, (1989) Immunoscintigraphy of adenocarcinoma by means of radiolabelled F(ab’)2 fragments of an anti-CEA monoclonal antibody. A multicenter study. Cancer Res (in press) Google Scholar
  18. 18.
    Sinclair AJ, Signore A, Bomanji J, et al. (1987) In vivo kinetics of 123I-labelled insulin: studies in normal subjects and patients with diabetes mellitus. Nucl Med Commun 8: 779–786PubMedCrossRefGoogle Scholar
  19. 19.
    Vera DR, Stadalnik RC, Krohn KA (1985) 99mTc-galactosylneoglycoalbumin: preparation and preclinical studies. J Nucl Med 26: 1157–1167Google Scholar
  20. 20.
    Galli G, Maini CL, Orlando P, et al. (1988) A radiopharmaceutical for the study of the liver: 99mTc-DTPA-asialoorosomucoid. I. Radiochemical and animal distribution studies. J Nucl Med Allied Sci 32: 110–116Google Scholar
  21. 21.
    Galli G, Maini CL, Orlando P, et al. (1988) A radiopharmaceutical for the study of the liver: 99mTc-DTPA-asialoorosomucoid. II. Human dynamic and imaging studies. J Nucl Med Allied Sci 32: 117–126Google Scholar
  22. 22.
    Riva P, Lazzari S, Agostini M, et al. (1989) Therapeutical applications of radiolabelled monoclonal antibodies: a phase II study in colon cancer. In: Schmidt HAE, Buraggi GL (eds) Nuclear medicine: trends and possibilities in nuclear medicine. Schattauer, Stuttgart, pp 651–654Google Scholar
  23. 23.
    Leichner PK, Klein JL, et al. (1983) Dosimetry of 1311-labelled antiferritin in hepatoma: specific activities in the tumor and liver. Cancer Treat Rep 67: 647–658PubMedGoogle Scholar
  24. 24.
    Madsen MT, Park CR, Thakur ML (1988) Dosimetry of iodine-131 Ethiodol in the treatment of hepatoma. J Nucl Med 29: 1038–1044PubMedGoogle Scholar
  25. 25.
    Park CH, Yoo HS, Lee JT et al. (1989) A new therapeutic modality for vascular hepatic tumors using intra-arterially injected 131l-lipiodol. In: Schmidt HAE, Buraggi GL (eds) Nuclear medicine: trends and possibilities in nuclear medicine. Schattauer, Stuttgart, pp 638–642Google Scholar
  26. 26.
    Hayashi N, Tamaki N, Yonekura Y, et al. (1985) Imaging of the hepatocellular carcinoma using dynamic positron emission tomography with nitrogen-13-ammonia. J Nucl Med 26: 254–257PubMedGoogle Scholar
  27. 27.
    Strauss LG, Clorius JH, Lehner B, et al. (1989) Scintigraphic studies of liver metastases from colorectal cancer using 0–15 labelled water and F-18-uracil. In: Schmidt HAE, Buraggi GL (eds) Nuclear medicine: trends and possibilities in nuclear medicine. Schattauer, Stuttgart, p 395Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • G. Galli
  • M. Salvatori
  • V. Valenza

There are no affiliations available

Personalised recommendations