Advertisement

Distribution of Neurochemical Deficits in Alzheimer’s Disease

  • D. M. Bowen
  • A. J. Cross
  • P. T. Francis
  • A. R. Green
  • S. L. Lowe
  • A. W. Procter
  • J. E. Steele
  • G. C. Stratmann
Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)

Summary

Cortical inhibitory neurotransmitters, neuropeptides, dopamine and probably noradrenaline are probably either not selectively or not critically affected in Alzheimer’s disease. It is, however, highly likely that shrinkage or loss of corticocortical pyramidal neurones is a key change. This change appears to be circumscribed and clinically relevant and to involve neurotransmitter glutamate. The putative pathogenic role of glutamate is briefly discussed.

Keywords

Pyramidal Neurone Neurobiol Aging Phosphoglycerate Mutase Corticotropin Release Factor Receptor NMDA Receptor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal MF, elevens RA, Chattha GK, MacGarvey MU, Mazurek MF, Gabriel SM (1986) Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease. Ann Neurol 20:282–288PubMedCrossRefGoogle Scholar
  2. Beal MF, elevens RA, Chattha GK, MacGarvey MU, Mazurek MF, Gabriel SM (1988) Galanin-like immunoreactivity is unchanged in Alzheimer’s disease and Parkinson’s disease. J Neurochem 51:1935–1941PubMedCrossRefGoogle Scholar
  3. Bowen DM, Davison AN (1986) Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease. Br Med Bull 42:75–80PubMedGoogle Scholar
  4. Bowen DM, Beyreuther K, Cross AJ, Davies P, Diringer H, Goldgaber D, Hock FJ, Khachaturian ZS, Kurz AF, Masters CL, Multhaup G, Price DL, Saper CB (1988) Group report. Cell injury: molecular biology and genetic basis. In: Henderson AS, Henderson JH (eds) Etiology of dementia of Alzheimer’s type. Wiley, Chichester, pp 165–176Google Scholar
  5. Candy J, Oakley A, Gauvreau D, Chalker P, Bishop H, Moon D, Staines G, Edwardson J (1988) Association of aluminium and silicon with neuropathological changes in the ageing brain. In: Von Hahn HP (ed) Interdiscipl Topics Geront Vol 25. Karger, Basel, pp 140–155Google Scholar
  6. Chawluk JB, Alavi A, Dann R, Hurlig HI, Bais S, Kushner M, Zimmerman RA, Reivich MJ (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28:431–437PubMedGoogle Scholar
  7. De Souza EB, Whitehouse PJ, Kuhor MJ, Price DC, Vale WW (1986) Reciprocal changes in corticotropin releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319:539–545Google Scholar
  8. Esiri MM, Pearson RCA, Steele JE, Bowen DM, Powell TPS (1989) A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer’s disease. J Neurol Neurosurg Psychiat in pressGoogle Scholar
  9. Francis PT, Bowen DM (1989) Tacrine, a drug with therapeutic potential for dementia: postmortem biochemical evidence. Can J Neurol Sci, 16:504–510PubMedGoogle Scholar
  10. Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies of early-onset Alzheimer’s disease: possible influence on treatment. N Engl J Med 313:7–11PubMedCrossRefGoogle Scholar
  11. Francis PT, Pearson RCA, Lowe SL, Neal JN, Stephens PH, Powell TPS, Bowen DM (1987) The dementia of Alzheimer’s disease: an update. J Neurol Neurosurg Psychiat 50:242–243PubMedCrossRefGoogle Scholar
  12. Greenamyre JT, Young AB (1989) Author’s response to commentaries. Neurobiol Aging 10:618–620CrossRefGoogle Scholar
  13. Gustafson L, Edvinson L, Dahlgren N, Hagberg B, Risberg J, Rosen I, Ferno H (1987) Intravenous physostigmine treatment of Alzheimer’s disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology 93: 31–35PubMedCrossRefGoogle Scholar
  14. Hansford RG, Castro F (1985) Role of Ca2 +in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochem J 227:129–136PubMedGoogle Scholar
  15. Henneberry RG (1989) The role of neuronal energy in the neurotoxicity of excitatory amino acids. Neurobiol Aging 10:611–613PubMedCrossRefGoogle Scholar
  16. Hyman BT, Van Hoesen GW, Damansio AR (1987) Alzheimer’s disease: glutamate depletion in hippocampal perforant pathway zone. Ann Neurol 22:37–40PubMedCrossRefGoogle Scholar
  17. Joachim CL, Mori H, Selkoe DJ (1989) Amyloid p-protein deposition in tissue other than brain in Alzheimer’s disease. Nature 341:226–230PubMedCrossRefGoogle Scholar
  18. Kelley M, Kowall N (1989) Corticotropin-releasing factor immunoreactive neurons persist throughout the brain in Alzheimer’s disease. Brain Res 501:392–396PubMedCrossRefGoogle Scholar
  19. Korey SR, Scheinberg L, Terry R, Stein A (1961) Studies in presenile demention. Trans Am Neurol Assoc 86:99–102PubMedGoogle Scholar
  20. Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM (1988) Gammaaminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111:785–799PubMedCrossRefGoogle Scholar
  21. Martin JB, Beal MF, Mazurek M, Kowall NW, Growdon JH (1988) Some observations on the significance of neurotransmitter changes in Alzheimer’s disease. In: Terry RD (ed) Aging and the brain. Aging Vol 32. Raven, New York, pp 129–148Google Scholar
  22. McCabe BJ, Horn G (1988) Learning and memory; regional changes in N-methyl-D-aspartate receptors in the chick brain. Proc Natl Acad Sci USA 85:2849–2855PubMedCrossRefGoogle Scholar
  23. Mohr E, Bruno G, Foster N, Gillespie M, Cox C, Hare TA, Tamminga C, Fedio P, Chase TN (1986) GABA-agonist therapy for Alzheimer’s disease. Clin Neuropharmacol 9:257–263PubMedCrossRefGoogle Scholar
  24. Moreno-Sanchez R, Hansford RC (1988) Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+concentration. Biochem J 256:403–412PubMedGoogle Scholar
  25. Najlerahim A, Bowen DM (1988) Biochemical measurements in Alzheimer’s disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J 251:305- 308PubMedGoogle Scholar
  26. Neary D, Snowden JS, Mann DMA, Northern B, Bowen DM, Sims NR, Yates PO, Davison AN (1986) Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiat 49:229–237PubMedCrossRefGoogle Scholar
  27. Palmer AM, Francis PT, Bowen DM, Benton JS, Neary D, Mann DMA, Snowden JS (1987) Catecholaminergic neurones assessed antimortem in Alzheimer’s disease. Brain Res 414:365- 370PubMedCrossRefGoogle Scholar
  28. Palmer AM, Stratmann GC, Procter AW, Bowen DM (1988) Possible neurotransmitter basis of behavioural changes in Alzheimer’s disease. Ann Neurol 23:616–620PubMedCrossRefGoogle Scholar
  29. Pearson RCA, Powell TPS (1989) The neuroanatomy of Alzheimer’s disease. Rev Neurosci, in pressGoogle Scholar
  30. Peinado JM, Mora F (1986) Glutamic acid as putative transmitter of the interhemispheric corticocortical connections in the rat. J Neurochem 47:1598–1603PubMedCrossRefGoogle Scholar
  31. Pericak-Vance MA, Yamaoka LH, Haynes CS, Speer MC, Haines JL, Gaskell PC, Hung W-Y, Clark CM, Heyman AL, Trofatter JA, Eisenmenger JP, Gilbert JR, Lee JE, Alberts MJ, Dawson DV, Bartlett RJ, Earl NL, Siddique T, Vance JM, Conneally PM, Roses AD (1988) Genetic linkage studies in Alzheimer’s disease families. Exp Neurol 102:271–279PubMedCrossRefGoogle Scholar
  32. Peterson C, Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83:7999–8001PubMedCrossRefGoogle Scholar
  33. Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, Murphy E, Doshi R, Bowen DM (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50:790–802PubMedCrossRefGoogle Scholar
  34. Procter AW, Wong EHF, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of [3H] MK801 binding in Alzheimer’s disease. J Neurochem 53:698–704PubMedCrossRefGoogle Scholar
  35. Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM (1989) Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer disease. Iveroscie Lett 101:62–66CrossRefGoogle Scholar
  36. Reinikainen KJ, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinnen PJ (1988) A postmortem study of noradrenergic serotonergic and GABAergic neurones in Alzheimer’s disease. J Neurol Sci 84:101–116PubMedCrossRefGoogle Scholar
  37. Savaura AA, Borges MM, Madeira MD, Tavares MA, Paula-Barbosa MM (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicroscop Cytol 17:459–464Google Scholar
  38. Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression, a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140PubMedCrossRefGoogle Scholar
  39. Sims NR, Bowen DM, Davison AN (1981) [14C]Acetylcholine synthesis and [14C]carbon dioxide production from [U14C]glucose by tissue prisms from human neocortex. Biochem J 196:867–876PubMedGoogle Scholar
  40. Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2from [U-14C]glucose in vitro in human neocortex. J Neurochem 41:1329–1334PubMedCrossRefGoogle Scholar
  41. Sims NR, Finegan JM, Blass JP (1985) Altered glucose metabolism in fibroblasts from patients with Alzheimer’s disease. N Engl J Med 313:638–639PubMedCrossRefGoogle Scholar
  42. Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D (1987 a) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 436:30–38Google Scholar
  43. Sims NR, Finegan JM, Blass JP (1987) Altered metabolic properties of cultured skin fibroblasts in Alzheimer’s disease. Ann Neurol 21:451–457PubMedCrossRefGoogle Scholar
  44. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78PubMedCrossRefGoogle Scholar
  45. Sumpter PQ, Mann DMA, Davies CA, Yates PO, Snowden JS, Neary D (1986) An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal neurones of the cerebral cortex in Alzheimer’s disease. Neuropath Appl Neurobiol 12:305–319CrossRefGoogle Scholar
  46. Steele JE, Palmer HM, Stratmann GC, Bo wen DM (1989 a) The N-methyl-D-aspartate receptor complex in Alzheimer’s disease: reduced regulation by glycine but not zinc. Brain Res, in pressGoogle Scholar
  47. Steele JE, Palmer AM, Lowe SI, Bowen DM (1989 b) The influence of tetrahydro-9-aminoaeridine on excitatory amino acid neurotransmission in vivo and in vitro. Br J Pharmacol 96:353PGoogle Scholar
  48. Talamo BR, Rudel R, Kosik KS, Lee VMY, Neff S, Adelman L, Kanver JS (1989) Pathological changes in olfactory neurones in patients with Alzheimer’s disease. Nature 337:786–793CrossRefGoogle Scholar
  49. Wisniewski HM, Moretz RC, Iqbal K (1989) No evidence for aluminium in etiology and pathogenesis of Alzheimer’s disease. Neurobiol Aging 532–535Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • D. M. Bowen
  • A. J. Cross
  • P. T. Francis
  • A. R. Green
  • S. L. Lowe
  • A. W. Procter
  • J. E. Steele
  • G. C. Stratmann

There are no affiliations available

Personalised recommendations