Skip to main content

Distribution of Neurochemical Deficits in Alzheimer’s Disease

  • Conference paper

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Cortical inhibitory neurotransmitters, neuropeptides, dopamine and probably noradrenaline are probably either not selectively or not critically affected in Alzheimer’s disease. It is, however, highly likely that shrinkage or loss of corticocortical pyramidal neurones is a key change. This change appears to be circumscribed and clinically relevant and to involve neurotransmitter glutamate. The putative pathogenic role of glutamate is briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beal MF, elevens RA, Chattha GK, MacGarvey MU, Mazurek MF, Gabriel SM (1986) Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease. Ann Neurol 20:282–288

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, elevens RA, Chattha GK, MacGarvey MU, Mazurek MF, Gabriel SM (1988) Galanin-like immunoreactivity is unchanged in Alzheimer’s disease and Parkinson’s disease. J Neurochem 51:1935–1941

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Davison AN (1986) Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease. Br Med Bull 42:75–80

    PubMed  CAS  Google Scholar 

  • Bowen DM, Beyreuther K, Cross AJ, Davies P, Diringer H, Goldgaber D, Hock FJ, Khachaturian ZS, Kurz AF, Masters CL, Multhaup G, Price DL, Saper CB (1988) Group report. Cell injury: molecular biology and genetic basis. In: Henderson AS, Henderson JH (eds) Etiology of dementia of Alzheimer’s type. Wiley, Chichester, pp 165–176

    Google Scholar 

  • Candy J, Oakley A, Gauvreau D, Chalker P, Bishop H, Moon D, Staines G, Edwardson J (1988) Association of aluminium and silicon with neuropathological changes in the ageing brain. In: Von Hahn HP (ed) Interdiscipl Topics Geront Vol 25. Karger, Basel, pp 140–155

    Google Scholar 

  • Chawluk JB, Alavi A, Dann R, Hurlig HI, Bais S, Kushner M, Zimmerman RA, Reivich MJ (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28:431–437

    PubMed  CAS  Google Scholar 

  • De Souza EB, Whitehouse PJ, Kuhor MJ, Price DC, Vale WW (1986) Reciprocal changes in corticotropin releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319:539–545

    Google Scholar 

  • Esiri MM, Pearson RCA, Steele JE, Bowen DM, Powell TPS (1989) A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer’s disease. J Neurol Neurosurg Psychiat in press

    Google Scholar 

  • Francis PT, Bowen DM (1989) Tacrine, a drug with therapeutic potential for dementia: postmortem biochemical evidence. Can J Neurol Sci, 16:504–510

    PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies of early-onset Alzheimer’s disease: possible influence on treatment. N Engl J Med 313:7–11

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Pearson RCA, Lowe SL, Neal JN, Stephens PH, Powell TPS, Bowen DM (1987) The dementia of Alzheimer’s disease: an update. J Neurol Neurosurg Psychiat 50:242–243

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Young AB (1989) Author’s response to commentaries. Neurobiol Aging 10:618–620

    Article  Google Scholar 

  • Gustafson L, Edvinson L, Dahlgren N, Hagberg B, Risberg J, Rosen I, Ferno H (1987) Intravenous physostigmine treatment of Alzheimer’s disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology 93: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Hansford RG, Castro F (1985) Role of Ca2 +in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochem J 227:129–136

    PubMed  CAS  Google Scholar 

  • Henneberry RG (1989) The role of neuronal energy in the neurotoxicity of excitatory amino acids. Neurobiol Aging 10:611–613

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damansio AR (1987) Alzheimer’s disease: glutamate depletion in hippocampal perforant pathway zone. Ann Neurol 22:37–40

    Article  PubMed  CAS  Google Scholar 

  • Joachim CL, Mori H, Selkoe DJ (1989) Amyloid p-protein deposition in tissue other than brain in Alzheimer’s disease. Nature 341:226–230

    Article  PubMed  CAS  Google Scholar 

  • Kelley M, Kowall N (1989) Corticotropin-releasing factor immunoreactive neurons persist throughout the brain in Alzheimer’s disease. Brain Res 501:392–396

    Article  PubMed  CAS  Google Scholar 

  • Korey SR, Scheinberg L, Terry R, Stein A (1961) Studies in presenile demention. Trans Am Neurol Assoc 86:99–102

    PubMed  CAS  Google Scholar 

  • Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM (1988) Gammaaminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111:785–799

    Article  PubMed  Google Scholar 

  • Martin JB, Beal MF, Mazurek M, Kowall NW, Growdon JH (1988) Some observations on the significance of neurotransmitter changes in Alzheimer’s disease. In: Terry RD (ed) Aging and the brain. Aging Vol 32. Raven, New York, pp 129–148

    Google Scholar 

  • McCabe BJ, Horn G (1988) Learning and memory; regional changes in N-methyl-D-aspartate receptors in the chick brain. Proc Natl Acad Sci USA 85:2849–2855

    Article  PubMed  CAS  Google Scholar 

  • Mohr E, Bruno G, Foster N, Gillespie M, Cox C, Hare TA, Tamminga C, Fedio P, Chase TN (1986) GABA-agonist therapy for Alzheimer’s disease. Clin Neuropharmacol 9:257–263

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Sanchez R, Hansford RC (1988) Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+concentration. Biochem J 256:403–412

    PubMed  CAS  Google Scholar 

  • Najlerahim A, Bowen DM (1988) Biochemical measurements in Alzheimer’s disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J 251:305- 308

    PubMed  CAS  Google Scholar 

  • Neary D, Snowden JS, Mann DMA, Northern B, Bowen DM, Sims NR, Yates PO, Davison AN (1986) Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiat 49:229–237

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Francis PT, Bowen DM, Benton JS, Neary D, Mann DMA, Snowden JS (1987) Catecholaminergic neurones assessed antimortem in Alzheimer’s disease. Brain Res 414:365- 370

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Stratmann GC, Procter AW, Bowen DM (1988) Possible neurotransmitter basis of behavioural changes in Alzheimer’s disease. Ann Neurol 23:616–620

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Powell TPS (1989) The neuroanatomy of Alzheimer’s disease. Rev Neurosci, in press

    Google Scholar 

  • Peinado JM, Mora F (1986) Glutamic acid as putative transmitter of the interhemispheric corticocortical connections in the rat. J Neurochem 47:1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Pericak-Vance MA, Yamaoka LH, Haynes CS, Speer MC, Haines JL, Gaskell PC, Hung W-Y, Clark CM, Heyman AL, Trofatter JA, Eisenmenger JP, Gilbert JR, Lee JE, Alberts MJ, Dawson DV, Bartlett RJ, Earl NL, Siddique T, Vance JM, Conneally PM, Roses AD (1988) Genetic linkage studies in Alzheimer’s disease families. Exp Neurol 102:271–279

    Article  PubMed  CAS  Google Scholar 

  • Peterson C, Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83:7999–8001

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, Murphy E, Doshi R, Bowen DM (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50:790–802

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Wong EHF, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of [3H] MK801 binding in Alzheimer’s disease. J Neurochem 53:698–704

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM (1989) Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer disease. Iveroscie Lett 101:62–66

    Article  CAS  Google Scholar 

  • Reinikainen KJ, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinnen PJ (1988) A postmortem study of noradrenergic serotonergic and GABAergic neurones in Alzheimer’s disease. J Neurol Sci 84:101–116

    Article  PubMed  CAS  Google Scholar 

  • Savaura AA, Borges MM, Madeira MD, Tavares MA, Paula-Barbosa MM (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicroscop Cytol 17:459–464

    Google Scholar 

  • Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression, a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Davison AN (1981) [14C]Acetylcholine synthesis and [14C]carbon dioxide production from [U14C]glucose by tissue prisms from human neocortex. Biochem J 196:867–876

    PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2from [U-14C]glucose in vitro in human neocortex. J Neurochem 41:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Finegan JM, Blass JP (1985) Altered glucose metabolism in fibroblasts from patients with Alzheimer’s disease. N Engl J Med 313:638–639

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D (1987 a) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 436:30–38

    Google Scholar 

  • Sims NR, Finegan JM, Blass JP (1987) Altered metabolic properties of cultured skin fibroblasts in Alzheimer’s disease. Ann Neurol 21:451–457

    Article  PubMed  CAS  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78

    Article  PubMed  CAS  Google Scholar 

  • Sumpter PQ, Mann DMA, Davies CA, Yates PO, Snowden JS, Neary D (1986) An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal neurones of the cerebral cortex in Alzheimer’s disease. Neuropath Appl Neurobiol 12:305–319

    Article  CAS  Google Scholar 

  • Steele JE, Palmer HM, Stratmann GC, Bo wen DM (1989 a) The N-methyl-D-aspartate receptor complex in Alzheimer’s disease: reduced regulation by glycine but not zinc. Brain Res, in press

    Google Scholar 

  • Steele JE, Palmer AM, Lowe SI, Bowen DM (1989 b) The influence of tetrahydro-9-aminoaeridine on excitatory amino acid neurotransmission in vivo and in vitro. Br J Pharmacol 96:353P

    Google Scholar 

  • Talamo BR, Rudel R, Kosik KS, Lee VMY, Neff S, Adelman L, Kanver JS (1989) Pathological changes in olfactory neurones in patients with Alzheimer’s disease. Nature 337:786–793

    Article  Google Scholar 

  • Wisniewski HM, Moretz RC, Iqbal K (1989) No evidence for aluminium in etiology and pathogenesis of Alzheimer’s disease. Neurobiol Aging 532–535

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowen, D.M. et al. (1990). Distribution of Neurochemical Deficits in Alzheimer’s Disease. In: Rapoport, S.I., Petit, H., Leys, D., Christen, Y. (eds) Imaging, Cerebral Topography and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75690-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75690-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75692-4

  • Online ISBN: 978-3-642-75690-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics