Skip to main content

Topography of Alzheimer’s Disease: Involvement of Association Neocortices and Connected Regions; Pathological, Metabolic and Cognitive Correlations; Relation to Evolution

  • Conference paper
Imaging, Cerebral Topography and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Alzheimer’s disease (AD) patients display reduced glucose metabolism and increased right-left metabolic asymmetries in the association neocortices early and throughout the clinical course, with relative sparing of primary sensory and motor neocortical regions. The metabolic asymmetries precede and predict neocortically mediated cognitive deficits. They also correspond with the distribution of AD neuropathology in the association, as compared with primary sensory and motor, neocortices. Outside of the neocortex, pathology is distributed mainly in brain regions functionally and anatomically connected with the association neocortex — medial septal nucleus, nucleus basalis of Meynert, CA1 and subicular subfields of hippocampal formation, layers II and IV of entorhinal cortex, corticobasal nuclear group of amygdaloid formation, cortically projecting neurons of the dorsal raphe and locus coeruleus. Comparative anatomical studies suggest that many of these regions evolved disproportionately in higher primates, particularly in hominids, by a process termed “integrative phylogeny.” Thus, the topographic distribution of functional and pathological abnormalities in AD suggests that AD is a phylogenic disease. Regional vulnerability to the disease may have been introduced into the primate genome during evolution, possibly by regulatory mutations. The topographic correspondence of neuropathology and functional deficits in AD and demented adults with Down’s syndrome suggests, furthermore, that a genomic change equivalent to increased expression of genes on human chromosome 21 introduced the AD process during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymo trypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Allore R, O’Hanlon D, Price R, Neilson K, Willard HF, Cox DR, Marks A, Dunn RJ (1988) Gene encoding the p subunit of S100 protein is on chromosome 21: implications for Down syndrome. Science 239:1311–1313

    Article  PubMed  CAS  Google Scholar 

  • Andy OJ, Stephan H (1966) Septal nuclei in primate phylogeny. A quantitative investigation. J Comp Neurol 126:157–170

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14:1–14

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, Fisman M, Hachinski V, Blume W, Fox A, Krai VA, Kirshen AJ, Fox H, Merskey H (1985) A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet 1:14–16

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, Nuttal K (1981) Topography of neurofibrillary tangles and granulovacuoles in hippocampi of patients with Down’s syndrome: quantitative comparisons with normal ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 7:13–20

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1988) Interactions between the micro tubule-associated t proteins and S100p regulate x phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263:5876–5883

    PubMed  CAS  Google Scholar 

  • Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987) Local cerebral glucose metabolic rates in obsessive compulsive disorder. Arch Gen Psychiatry 44:211–218

    PubMed  Google Scholar 

  • Benton A (1985) Visuoperceptual, visuospatial and visuoconstructive disorders. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology, 2nd ed. Oxford University Press, Oxford, pp 115–129

    Google Scholar 

  • Bird TD, Lampe TH, Nemens EJ, Miner GW, Sumi SM, Schellenberg GD (1988) Familial Alzheimer’s disease in American descendants of the Volga Germans: probable genetic founder effect. Ann Neurol 23:25–31

    Article  PubMed  CAS  Google Scholar 

  • Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkr 223:15–33

    Article  PubMed  CAS  Google Scholar 

  • Burger PC, Vogel FS (1973) The development of pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am J Pathol 73:457–476

    PubMed  CAS  Google Scholar 

  • Casanova MF, Walker LC, Whitehouse PJ, Price DL (1985) Abnormalities of the nucleus basalis in Down’s syndrome. Ann Neurol 18:310–319

    Article  PubMed  CAS  Google Scholar 

  • Creasey H, Schwartz M, Frederickson H, Haxby JV, Rapoport SI (1986) Quantitative computed tomography in dementia of the Alzheimer type. Neurology 36:1563–1568

    PubMed  CAS  Google Scholar 

  • Darwin C (1871) The descent of man. In: Hutchins RM (ed) Great books of the western world. Darwin. William Benton, Chicago, 49: pp 1–659

    Google Scholar 

  • Davis TP, Davies P, Culling-Berglund AJ, Malek E, Gillespie T (1988) Central metabolism of somatostatin 14 and 28 is altered in Alzheimer’s disease. Abstr Soc Neurosci 14:155

    Google Scholar 

  • De Grouchy J, Turleau C, Finaz C (1978) Chromosomal phylogeny of the primates. Annual Rev Genet 12:289–328

    Article  Google Scholar 

  • Duara R, Grady CL, Haxby JV, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter NL, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36:879–887

    PubMed  CAS  Google Scholar 

  • Duyckaerts C, Hauw J-J, Piette F, Rainsard C, Poulain V, Berthaux P, Escourolle R (1985) Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol (Berl) 66:72–74

    Article  CAS  Google Scholar 

  • Edelman GM (1987) Neural darwinism. The theory of neuronal group selection. Basic Books, New York, pp 1–371

    Google Scholar 

  • Federoff HJ, Grabczyk ED, Fishman MC (1988) Dual regulation of GAP-43 gene expression by nerve growth factor and glucocorticoids. J Biol Chem 263:19290–19295

    PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 12:189–198

    Google Scholar 

  • Gorry JD (1963) Studies on the comparative anatomy of the ganglion basale of Meynert. Acta Anat 55:51–104

    Article  PubMed  CAS  Google Scholar 

  • Grady CL, Berg G, Carson RE, Daube-Witherspoon ME, Friedland RP, Rapoport SI (1989 a) Quantitative comparison of cerebral glucose metabolic rates from two positron emission tomographs. J Nucl Med 30:1386–1392

    Google Scholar 

  • Grady CL, Haxby TV, Horwitz B, Sundaram M, Berg G, Schapiro M, Friedland RP, Rapoport SI (1988) A longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol 10:576–596

    Article  PubMed  CAS  Google Scholar 

  • Grady CL, Haxby J, Schapiro MB, Kumar A, Friedland RP, Rapoport SI (1989 b) Heterogeneity in dementia of the Alzheimer type (DAT): subgroups identified from cerebral metabolic patterns using positron emission tomography (PET). Neurol 39 (Suppl 1): 167–168

    Google Scholar 

  • Grady CL, Haxby JV, Schlageter NL, Berg G, Rapoport SI (1986) Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology 36:1390–1392

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein % (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5:193–200

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede non-memory cognitive deficits in early Alzheimer’s-type dementia. Arch Neurol 43:882–885

    PubMed  CAS  Google Scholar 

  • Heindel WC, Salmon DP, Shults CW, Walicke PA, Butters N (1989) Neuropsychological evidence of multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci 9:582–587

    PubMed  CAS  Google Scholar 

  • Heston LL, Mastri AR, Anderson VE, White J (1981) Dementia of the Alzheimer type. Clinical genetics, natural history, and associated conditions. Arch Gen Psychiat 38:1085–1090

    PubMed  CAS  Google Scholar 

  • Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI (1987) Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res 407:294–306

    Article  PubMed  CAS  Google Scholar 

  • Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kühl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Amer J Physiol 238:E69- E82

    PubMed  CAS  Google Scholar 

  • Hughlings Jackson J (1884) In: Taylor J (ed) Selected writings of John Hughlings Jackson. Evolution and dissolution of the nervous system, 1931, vol 2. Basic Books, New York, pp 2–118

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481

    Article  PubMed  CAS  Google Scholar 

  • Jamada M, Mahraein P (1968) Verteilungsmuster der senilen Veränderungen im Gehirn. Arch Psychiatr Nervenkr 211:308–324

    Article  PubMed  CAS  Google Scholar 

  • Kemper T (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed), Clinical neurology of aging. Oxford University Press, Oxford, pp 9–52

    Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216

    Article  PubMed  CAS  Google Scholar 

  • Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, Reichardt LF (1986) Nerve growth factor expression in the developing rat brain. Science 234:352–355

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808

    PubMed  CAS  Google Scholar 

  • Luria AR (1973) The working brain. An introduction to neuropsychology. Basic Books, New York, pp 1–398

    Google Scholar 

  • Luxenberg JS, Haxby JV, Creasey H, Sundaram M, Rapoport SI (1987) Rate of ventricular enlargement in dementia of the Alzheimer type correlates with rate of neuropsychological deterioration. Neurology 37:1135–1140

    PubMed  CAS  Google Scholar 

  • Luxenberg JS, Swedo SE, Flament MF, Rapoport J, Friedland RP, Rapoport SI (1988) Neuroanatomy abnormalities in obsessive-compulsive disorder detected with quantitative X-ray computed tomography. Am J Psychiatry 145:1089–1093

    PubMed  CAS  Google Scholar 

  • Mann DMA, Esiri MM (1989) The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 89:169–179

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Tucker CM, Yates PO (1988) Alzheimer’s disease: an olfactory connection. Mech Ageing Develop 42:1–15

    Article  CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1985) Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures. Neurosci Lett 56:51–55

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1987) Dopaminergic neurotransmitter systems in Alzheimer’s disease and in Down syndrome at middle age. J Neurol Neurosurg Psychiatry 50:341–344

    Article  PubMed  CAS  Google Scholar 

  • Marcyniuk B, Mann DMA, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neursci Lett 64:247–232

    Article  CAS  Google Scholar 

  • Marcyniuk B, Mann DMA, Yates PO, Ravindra CR (1988) Topography of nerve cell loss from the locus coeruleus in middle aged persons with Down’s syndrome. J Neurol Sci 83:15–24

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey Al, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Lewis DA, Campbell MJ, Huntley GW, Benson DL, Bouras C (1987) A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res 416:331–336

    Article  PubMed  CAS  Google Scholar 

  • Najlerahim A, Bowen DM (1988) Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 75:509–512

    Article  CAS  Google Scholar 

  • Nee LE, Eldridge R, Sunderland T, Thomas CB, Katz D, Thompson KE, Weingartner H, Weiss H, Julian C, Cohen R (1987) Dementia of the Alzheimer type: clinical and family study of 22 twin pairs. Neurology 37:359–363

    PubMed  CAS  Google Scholar 

  • Neve RL, Finch EA, Bird ED, Benowitz LI (1988 a) Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc Natl Acad Sci USA 85:3638–3642

    Article  PubMed  CAS  Google Scholar 

  • Neve RL, Finch EA, Dawes LR (1988 b) Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1:669–677

    Article  PubMed  CAS  Google Scholar 

  • Palmert MR, Golde TE, Cohen ML, Kovacs DM, Tanzi RE, Gusella JF, Usiak MF, Younkin LH, Younkin SG (1988) Amyloid protein precursor messenger RNAs: differential expression in Alzheimer’s disease. Science 241:1080–1084

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 82:4531–4534

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (1988 a) Brain evolution and Alzheimer’s disease. Rev Neurologique (Paris) 144:79–90

    CAS  Google Scholar 

  • Rapoport SI (1988 b) A phylogenic hypothesis for Alzheimer’s disease. In: Sinet PM, Lamour Y, Christen Y (eds) Genetics and Alzheimer’s disease. Springer, Berlin Heidelberg New York, pp 62–88

    Google Scholar 

  • Rapoport SI (1989) Hypothesis: Alzheimer’s disease is a phylogenic disease. Med Hypotheses 29:147–150

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, Horwitz B, Haxby JV, Grady CL (1986) Alzheimer’s disease: metabolic uncoupling of associative brain regions. Can J Neurol Sci 13:540–545

    PubMed  CAS  Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neuro Sci 5:2801–2808

    CAS  Google Scholar 

  • Roofe PG, Matzke HA (1968) Introduction to the study of evolution: its relationship to neuropathology. In: Minkler J (ed) Pathology of the nervous system, vol 1. Blakiston, New York, pp 14–22

    Google Scholar 

  • Roses AD, Pericak-Vance MA, Haynes CS, Haines JL, Gaskell PA, Yamaoka LH, Hung W-Y, Clark CM, Alberts MJ, Lee JE, Siddique T, Heyman AL (1988) Genetic linkage studies in Alzheimer’s disease (AD). Neurology 38 (Suppl 1): 173

    Google Scholar 

  • Saraat HB, Netsky MG (1981) Evolution of the nervous system, 2nd edn. Oxford University Press, Oxford, pp 1–504

    Google Scholar 

  • Schapiro MB, Haxby JV, Grady CL, Rapoport SI (1986) Cerebral glucose utilization, quantitative tomography, and cognitive function in adult Down syndrome. In: Epstein CJ (ed) The neurobiology of Down syndrome. Raven Press, New York, pp 89–108

    Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Moore DK, Boenhnke M, Bryant EM, Lampe TH, Nochlin D, Sumi SM, Deeb SS, Beyreuther K, Martin GM (1988) Absence of linkage of chromosome 21q21 markers to familial Alzheimer’s disease. Science 241:1507–1510

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235:873–877

    Article  PubMed  CAS  Google Scholar 

  • Stephan H, Andy OJ (1970) The allocortex in primates. In: Noback CR, Montagna W (eds) The primate brain. Adv primatology, vol 1. Appleton-Century-Crofts, New York, pp 109–135

    Google Scholar 

  • Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat 98:130–153

    Article  PubMed  CAS  Google Scholar 

  • Stephan H, Bauchot R, Andy OJ (1970) Data on the size of the brain and of various brain parts in insectivores and primates. In: Noback CR, Montagna W (eds) The primate brain. Adv Primatology, Vol 1. Appleton Century Crofts, New York, pp 289–297

    Google Scholar 

  • Stephan H, Frahm HD, Baron G (1987) Comparison of brain structure volumes in insectivore and primates. VII. Amygdaloid components. J Hirnforsch 28:571–584

    PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growdon J, Bruni A, Foncin J-F, Salmon D, Frommelt P, Amaducci L, Sorbi S, Piacentini S, Stewart GD, Hobbs WJ, Conneally PM, Gusella JF (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890

    Article  PubMed  CAS  Google Scholar 

  • Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A, Friedland R, Rapoport SI, Rapoport JL (1989) Cerebral glucose metabolism in childhood-onset obsessive compulsive disorder. Arch Gen Psychiatry 46:518–523

    PubMed  CAS  Google Scholar 

  • Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (ed) Aging and the brain. Adv behavioral biol, vol 3. Plenum, New York, pp 89–116

    Google Scholar 

  • Wechsler D (1955) Wechsler adult intelligence scale. Psychological Corporation, New York, pp 1–300

    Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delong MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC (1985) The molecular basis of evolution. Sci Am 253:164–173

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Jones EP (1977) Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J Comp Neurol 175:129–158

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Rapoport JL (1988) Obsessive-compulsive disorder: is it a basal ganglia dysfunction? In: Rapoport JL (ed) Obsessive compulsive disorder in children and adolescents. American Psychiatric Press, Washington DC, pp 327–344

    Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282

    Article  PubMed  CAS  Google Scholar 

  • Zweig RM, Ross CA, Hedreen JC, Steele C, Cadillo JE, Whitehouse PJ, Folstein MF, Price DL (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapoport, S.I. (1990). Topography of Alzheimer’s Disease: Involvement of Association Neocortices and Connected Regions; Pathological, Metabolic and Cognitive Correlations; Relation to Evolution. In: Rapoport, S.I., Petit, H., Leys, D., Christen, Y. (eds) Imaging, Cerebral Topography and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75690-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75690-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75692-4

  • Online ISBN: 978-3-642-75690-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics