Advertisement

Pericyclic Reactions

  • Vladimir I. Minkin
  • Boris Ya. Simkin
  • Ruslan M. Minyaev

Abstract

According to Woodward and Hoffmann ([1] p. 182), the pericyclic reactions comprise all concerted intermolecular and intramolecular (electrocyclic, sigmatropic) cycloaddition reactions. The rules of selection of preferable structures for transition states of these reactions based on the principles of orbital approach have found wide acceptance and may serve as an example of an eifective qualitative theory. One should not, however, forget that the formulation of the rules [1] rests on analysis of the general topology rather than on specific geometry of alternative structures of transition states. As will be shown below direct calculations of the PES of pericyclic reactions often introduce quite substantial corrections into conventional notions regarding the coordinate and the structure of a transition state of the pericyclic reaction. On many occasions, only such calculations enable us to answer the question as to whether a reaction is indeed concerted (in other words, proceeding without formation of intermediates) and, if so, whether the bond-making and bond-breaking processes are synchronized.

Keywords

Transition State Activation Barrier Cycloaddition Reaction Orbital Approach Pericyclic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Academic Press, New YorkGoogle Scholar
  2. 2.
    Jug K (1980) Theor Chim Acta 54: 263CrossRefGoogle Scholar
  3. 3.
    Burke LA, Leroy G (1979) Bull Soc Chim Belg 88: 379CrossRefGoogle Scholar
  4. 4.
    Duran M, Bertran J (1982) J Chem Soc Perkin Trans 11: 681Google Scholar
  5. 5.
    Fujimoto H, Inagaki S, Fukui K (1975) J ACS 97:6108; (1976) ibid 98: 2670Google Scholar
  6. 6.
    Bernardi F, Bottoni A, Robb MA, Schlegel HB, Tonachini G (1985) J ACS 107: 2260CrossRefGoogle Scholar
  7. 7.
    Segal GA (1974) J ACS 96: 7892CrossRefGoogle Scholar
  8. 8.
    Bernardi F, Olivucci M, Robb MA, Tonachini G (1986) J ACS 108: 1408CrossRefGoogle Scholar
  9. 9.
    Bernardi F, Olivucci M, McDouall JJW, Robb MA (1987) J ACS 109: 544CrossRefGoogle Scholar
  10. 10.
    Bernardi F, Bottoni A, Olivucci M, McDouall JJW, Robb MA, Tonachini G (1988) THEOCHEM 165: 341CrossRefGoogle Scholar
  11. 11.
    Raghavachari K, Haddon RC, Roth HD (1983) J ACS 105: 3110CrossRefGoogle Scholar
  12. 12.
    Epiotis ND (1973) J ACS 95: 1191CrossRefGoogle Scholar
  13. 13.
    Sauer J, Sustmann R (1980) Angew Chem Intern Ed Engl 19: 779CrossRefGoogle Scholar
  14. 14.
    Konovalov AI (1983) Uspekhi Khim (Russ Chem Rev) 52: 1852Google Scholar
  15. 15.
    Bauld NL, Bellville DJ, Lorenz KT, Pabon RA, Reynolds DW, Wirth DD, Chiou HS, Marsh BK (1987) Acc Chem Res 20: 371CrossRefGoogle Scholar
  16. 16.
    Basilevsky MV, Ryaboy VM (1987) in: Veselov MG (ed) Current problems of quantum chemistry. The quantum chemical methods. The theory of intermolecular interaction and solid state. Khimia, Moscow (in Russian)Google Scholar
  17. 17.
    Dewar MJS, Griffin AC, Kirschner S (1974) J ACS 96: 6225CrossRefGoogle Scholar
  18. 18.
    Dewar MJS, Olivella S, Rzepa HS (1978) J ACS 100: 5650CrossRefGoogle Scholar
  19. 19.
    Oliva A, Fernandez-Alonso JT, Bertran J (1978) Tetrahedron 34: 2029Google Scholar
  20. 20.
    Dewar MJS, Olivella S, Stewart JP (1986) J ACS 108: 5771CrossRefGoogle Scholar
  21. 21.
    Basilevsky MV, Shamov AG (1977) J ACS 99: 1369CrossRefGoogle Scholar
  22. 22.
    Burke LA, Leroy G, Sana M (1975) Theor Chim Acta 40: 313CrossRefGoogle Scholar
  23. 23.
    Burke LA, Leroy G (1977) Theor Chim Acta 44: 219CrossRefGoogle Scholar
  24. 24.
    Townshend RE, Ramunni G, Segal G, Hehre WJ, Salem L (1976) J ACS 98: 2190CrossRefGoogle Scholar
  25. 25.
    Brown FK, Houk KN (1984) Tetrahedron Lett 25: 4609CrossRefGoogle Scholar
  26. 26.
    Ortega M, Oliva A, Lluch JM, Bertran J (1983) Chem Phys Lett 102: 317CrossRefGoogle Scholar
  27. 27.
    Houk KN, Lin YT, Brown FK (1986) J ACS 108: 554CrossRefGoogle Scholar
  28. 28.
    Bernardi F, Bottoni A, Field MJ, Guest MF, Hiller IH, Robb MA, Venturini A (1988) J ACS 110: 3050CrossRefGoogle Scholar
  29. 29.
    Dewar MJS, Pierini AB (1984) J ACS 106: 203CrossRefGoogle Scholar
  30. 30.
    Dewar MJS (1984) J ACS 106: 209CrossRefGoogle Scholar
  31. 31.
    Dewar MJS, Chantranupong L (1983) J ACS 105: 7152CrossRefGoogle Scholar
  32. 32.
    Basilevsky MV, Shamov AG, Tikhomirov VA (1977) J ACS 99: 1369CrossRefGoogle Scholar
  33. 33.
    Caramella P, Houk KN, Domel-Smith LN (1977) J ACS 99: 4514CrossRefGoogle Scholar
  34. 34.
    Barnard JA, Parrot JK (1976) J Chem Soc Farad Trans II 1: 2404Google Scholar
  35. 35.
    Dewar MJS (1978) in: Further perspectives in organic chemistry Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Mclver JW, Komornicki A (1972) J ACS 94: 2625CrossRefGoogle Scholar
  37. 37.
    Dewar MJS (1975) Chem Brit 11: 95Google Scholar
  38. 38.
    Jensen A (1983) Theor Chim Acta 63: 269CrossRefGoogle Scholar
  39. 39.
    Dewar MJS, Kirschner S (1974) J ACS 96: 6809CrossRefGoogle Scholar
  40. 40.
    Basilevsky MV, Shamov AG (1981) Chem Phys 60: 347CrossRefGoogle Scholar
  41. 41.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J ACS 107: 3902CrossRefGoogle Scholar
  42. 42.
    Kikuchi O (1974) Bull Chem Soc Japan 47: 1551CrossRefGoogle Scholar
  43. 43.
    Hsu K, Buenker RJ, Peyerimhoff SD (1971) J ACS 93: 2117CrossRefGoogle Scholar
  44. 44.
    Breulet J, Schaefer III HF (1984) J ACS 106: 1221CrossRefGoogle Scholar
  45. 45.
    Rondan NG, Houk KN (1985) J ACS 107:2099; Rudolf K, Spellmeyer DS, Houk KN (1987) J Org Chem 52: 3708Google Scholar
  46. 46.
    Cooper W, Walters WD (1958) J ACS 80: 4220CrossRefGoogle Scholar
  47. 47.
    Garr RW Jr, Walters WD (1965) J Phys Chem 69: 1073CrossRefGoogle Scholar
  48. 48.
    Spellmeyer DC, Houk KN (1988) J ACS 110: 3412CrossRefGoogle Scholar
  49. 49.
    Van der Lugt WTA, Oosterhoft LJ (1969) J ACS 91: 6042CrossRefGoogle Scholar
  50. 50.
    Grimbert D, Segal G, Devaquet A (1975) J ACS 97: 6629CrossRefGoogle Scholar
  51. 51.
    Kirmse W, Rondan NG, Houk KN (1984) J ACS 106: 1871CrossRefGoogle Scholar
  52. 52.
    Dobier WE Jr, Korohiak H, Burton DJ, Heinze PL, Bailey AR, Shaw GS, Hansen SW (1987) J ACS 109: 219CrossRefGoogle Scholar
  53. 53.
    Houk KN, Spellmeyer DC, Jefford CW, Rimbault CG, Wang Y, Miller RD (1988) J Org Chem 53: 2127CrossRefGoogle Scholar
  54. 54.
    Pichko VA, Simkin BYa, Minkin VI (1987) Dokl Akad Nauk SSSR 292: 910Google Scholar
  55. 55.
    Pichko VA, Simkin BYa, Minkin VI (1989) THEOCHEM (in press)Google Scholar
  56. 56.
    Komornicki A, Mclver JW (1974) J ACS 96: 5798CrossRefGoogle Scholar
  57. 57.
    Lewis KE, Steiner H (1964) J Chem Soc:3080; Marvell EN, Caple G, Senatz B (1965) Tetrahedron Lett: 385Google Scholar
  58. 58.
    Simkin BY, Pichko VA, Minkin VI (1988) Zh Org Khim 24: 1569Google Scholar
  59. 59.
    Simkin BY, Makarov SP, Minkin VI (1982) Khim Heterocycl Soed N8: 1028Google Scholar
  60. 60.
    Simkin BY, Makarov SP, Minkin VI (1984) Khim Heterocycl Soed N6: 747Google Scholar
  61. 61.
    Dewar MJS, Kirschner S (1975) J ACS 97: 2931CrossRefGoogle Scholar
  62. 62.
    Frey HM, Stevens IDR (1969) Trans Farad Soc 61: 90CrossRefGoogle Scholar
  63. 63.
    Shevlin P, McKee ML (1988) J ACS 110: 1666CrossRefGoogle Scholar
  64. 64.
    Budzelaar PHM, Kraka E, Cremer D, Schleyer PR (1986) J ACS 108: 561CrossRefGoogle Scholar
  65. 65.
    Bouma WJ, Vincent MA, Radom L (1978Int J Quant Chem 14: 767Google Scholar
  66. 66.
    Rodwell WR, Bouma WJ, Radom L (1980) Int J Quant Chem 18: 107CrossRefGoogle Scholar
  67. 67.
    Rosenstock HM, Draxl K, Steiner BW, Herron JT (1977) J Phys Chem Ref Data (Suppl I ) 6: 1Google Scholar
  68. 68.
    Gajewski JJ, Conrad ND (1978) J ACS 100: 6268CrossRefGoogle Scholar
  69. 69.
    Roth WR, König J (1966) Liebigs Ann Chem 699: 24CrossRefGoogle Scholar
  70. 70.
    Hess BA, Schaad LJ (1983) J ACS 105: 7185CrossRefGoogle Scholar
  71. 71.
    Jensen F, Houk KN (1987) J ACS 109: 3139CrossRefGoogle Scholar
  72. 72.
    Dewar MJS, Healy EF, Ruiz JM (1988) J ACS 110: 266CrossRefGoogle Scholar
  73. 73.
    Dewar MJS, Merz KM, Stewart JJP (1985) J Chem Soc Chem Commun:166Google Scholar
  74. 74.
    Minyaev RM, Yudilevich IA, Minkin VI (1986) Zh Org Khim 22: 19Google Scholar
  75. 75.
    Kessler H, Feigel M (1982) Acc Chem Res 15: 2CrossRefGoogle Scholar
  76. 76.
    Anh NT, Flian M, Hoffmann R (1978) J ACS 100: 110CrossRefGoogle Scholar
  77. 77.
    Albright TA, Hofmann P, Hoffmann R, Lillya CP, Dobosh PA (1983) J ACS 105: 3396CrossRefGoogle Scholar
  78. 78.
    Minkin VI, Minyaev RM, Zhdanov YA (1987) Nonclassical structures of organic compounds. Mir, MoscowGoogle Scholar
  79. 79.
    Minkin VI, Minyaev RM (1982) Uspekhi Khim (Russ Chem Rev) 51: 586Google Scholar
  80. 80.
    Wade K (1975) Chem Brit 11: 177Google Scholar
  81. 81.
    Mingos DMP (1984) Acc Chem Res 17: 311CrossRefGoogle Scholar
  82. 82.
    Rudoph R (1976) Acc Chem Res 9: 446CrossRefGoogle Scholar
  83. 83.
    Teo BK (1985) Inorg Chem 24: 4209CrossRefGoogle Scholar
  84. 84.
    Childs RF (1982) Tetrahedron 38: 567CrossRefGoogle Scholar
  85. 85.
    Minkin VI, Minyaev RM (1979) Zh Org Khim 15: 1569Google Scholar
  86. 86.
    Minyaev RM, Minkin VI (1982) Zh Org Khim 18: 2009Google Scholar
  87. 87.
    Minkin VI, Minyaev RM, Orlova GV (1984) THEOCHEM 110: 241CrossRefGoogle Scholar
  88. 88.
    Ustynuk YA, (1982) Vestn MGU (ser 2 Khimia) 23: 605Google Scholar
  89. 89.
    Gerson F, Huber W, Müllen K (1978) Angew Chem 90: 216CrossRefGoogle Scholar
  90. 90.
    Salem L (1982) Electrons in chemical reactions: first principles. Wiley-Interscience, New YorkGoogle Scholar
  91. 91.
    Glukhovtsev MN, Simkin BYa, Minkin VI (1985) Uspekhi Khim (Russ Chem Rev) 54: 86Google Scholar
  92. 92.
    Bally T, Masamune S (1980) Tetrahedron 36: 343CrossRefGoogle Scholar
  93. 93.
    Kollmar H, Carrion F, Dewar MJS, Bingham RC (1981) J ACS 103: 5292CrossRefGoogle Scholar
  94. 94.
    Bock H, Roth B, Maier G (1984) Chem Ber 117: 172CrossRefGoogle Scholar
  95. 95.
    Bauld NL, Bellville DJ, Pabon R, Chelsky R, Green G (1983) J ACS 105: 2378CrossRefGoogle Scholar
  96. 96.
    Chanon M (1982) Bull Soc Chim France 2: 197Google Scholar
  97. 97.
    Bellville DJ, Chelsky R, Bauld NL (1982) J Comput Chem 3: 548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Vladimir I. Minkin
    • 1
  • Boris Ya. Simkin
    • 1
  • Ruslan M. Minyaev
    • 1
  1. 1.Institute of Physical and Organic ChemistryRostov UniversityRostov on DonUSSR

Personalised recommendations