Advertisement

Thermochemotherapie des Prostatakarzinoms: Tierexperimentelle Ergebnisse

  • P. G. Fabricius

Zusammenfassung

Die Therapieerfolge beim fortgeschrittenen Prostatakarzinom (PC) können nicht befriedigen [34]. Die Tumorerkrankung ist zwar in über 80% einer palliativen Hormontherapie zugänglich, aber eine Verbesserung der Überlebensrate ist in den letzten 45 Jahren nicht erreicht worden. Sie liegt unverändert nach 5 Jahren bei 56% [2, 35]. Da bekannt ist, daß ein Fortschreiten des Tumorwachstums immer auf hormontaube Zellklone zurückzuführen ist und der Patient am hormonabhängigen Tumor stirbt [41], war es wichtig zu untersuchen, ob eine primäre Androgenablation die „Hormonresistenz“erzeugt (Adaptationsmodell [29]) oder ein primär heterogener Tumor durch die Therapie selektioniert würde (Klonselektionsmodell [22]) (Abb. 1). Eine klinische Konsequenz der Klonselektionstheorie könnte die primäre Kombination von Hormon- und Chemotherapie bei fortgeschrittener Erkrankung sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alfieri AA, Hahn EW, Kim HH (1981) Role of Cell-mediated immunity in tumor eradication by hyperthermia. Cancer Res 41: 1301–1305PubMedGoogle Scholar
  2. 2.
    Benson MC (1987) Management of primary stage D prostatic cancer. Prostate Cancer B:411–428Google Scholar
  3. 3.
    Boon-Niermeijer EK, Souren JEM, Waal AM de, Wijk R van (1988) Thermotolerance induced by heat and ethanol. Int J Hyperthermia 4: 211–222PubMedCrossRefGoogle Scholar
  4. 4.
    Brezovich I A, Atkinson WJ, Lilly MB (1984) Local hyperthermia with interstitial techniques. Cancer Res 44: 4752–4756Google Scholar
  5. 5.
    Bull JM (1984) An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res 44: 4853–4856Google Scholar
  6. 6.
    Burk K, Jonas D (1987) Sinn und Unsinn von Therapiekombinationen beim fortgeschrittenen Prostatakarzinom. In: Nagel R (Hrsg) Konservative Therapie des Prostatakarzinoms. Springer, Berlin Heidelberg New York Tokyo, S 125–136Google Scholar
  7. 7.
    Campeneere Deprez-De D, Baurain R, Trouet A (1979) Pharmacokinetic, toxicologic, and chemotherapeutic properties of detorubicin in mice: A comparative study with daunorubicin and adriamycin. Cancer Treat Rep 63: 861–867Google Scholar
  8. 8.
    Cheung AY, Neyzari A (1984) Deep local hyperthermia for cancer therapy: External electromagnetic and ultrasound techniques. Cancer Res 44: 4736–4744Google Scholar
  9. 9.
    Cunningham DE, Frey RA, Velkley DE (1980) An inexpensive variable-frequency microwave system for hyperthermia. Med Phys 7: 712–715PubMedCrossRefGoogle Scholar
  10. 10.
    Dewey WC (1984) Interaction of heat with radiation and chemotherapy. Cancer Res 44: 4714–4720Google Scholar
  11. 11.
    Doroshow JH, Locker GY, Myers CE (1979) Experimental animal models of adriamycin cardiotoxicity. Cancer Treat Rep 63: 855–860PubMedGoogle Scholar
  12. 12.
    Emami B, Perez CA, Leybovich L, Straube W, Yongerichten D (1987) Int J Hyperthermia 3: 107–118PubMedCrossRefGoogle Scholar
  13. 13.
    Emmett JL, Greene LF, Papantoniou A (1960) Endocrine therapy in carcinoma of the prostate gland: 10-year survival studies. J Urol 83: 471–484PubMedGoogle Scholar
  14. 14.
    Fiebig HH (1984) Wachstum und Chemotherapie menschlicher Tumoren — vorwiegend Dickdarm, Magen- und Bronchialkarzinome — in der thymusaplastischen Nacktmaus. Habilitationsschrift, Albert-Ludwigs-Universität, FreiburgGoogle Scholar
  15. 15.
    Field StB (1987) Studies relevant to a means of quantifying the effects of hyperthermia. Int J Hyperthermia 3: 291–296PubMedCrossRefGoogle Scholar
  16. 16.
    Fujimoto S, Shrestha RD, Ohta M, Igarashi K, Endoh F, Kokobun M, Koike S et al. (1987) Enhanced antitumor efficacy with a combination of hyperthermochemotherapy and thermosensitization with polyamine antimetabolites in nude mice. Jpn J Surg 17: 110–117PubMedCrossRefGoogle Scholar
  17. 17.
    Hahn GM, Braun J, Har-Kedar I (1975) Thermochemotherapy: Synergism between hyperthermia (42–43) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc Natl Acad Sci USA 72: 937–940PubMedCrossRefGoogle Scholar
  18. 18.
    Hahn GM (1982) Hyperthermia and cancer. Plenum Publ, New YorkGoogle Scholar
  19. 19.
    Hall EJ, Roizin-Towle L (1984) Biological effects of heat. Cancer Res 44: 4708–4713Google Scholar
  20. 20.
    Herman TS, Teicher BA, Dochelson M, Clark J, Svensson G, Coleman CN (1988) Rationale for use of local hyperthermia with radiation therapy and selected anticancer drugs in locally advanced human malignancies. Int J Hyperthermia 4: 143–158PubMedCrossRefGoogle Scholar
  21. 21.
    Hoehn W, Wagner M, Riemann JF, Hermanek P, Williams E, Walther Schrueffer R (1984) Prostatic adenocarcinoma PC EW, a new human tumor line transplantable in nude mice. Prostate 5: 445–452PubMedCrossRefGoogle Scholar
  22. 22.
    Isaacs JT (1984) The timing of androgen ablation therapy and/or chemotherapy in the treatment of prostatic cancer. Prostate 5: 1–17PubMedCrossRefGoogle Scholar
  23. 23.
    Issels RD, Biaglow JE, Epstein L, Gerweck LE (1984) Enhancement of cysteamine cytotoxicity by hyperthermia and its modification by catalase and superoxide dismutase in Chinese hamster ovary cells. Cancer Res 44: 3911–3915PubMedGoogle Scholar
  24. 24.
    Issels RD, Wilmanns W (1985) Biochemische Grundlagen der Hyperthermiebehandlung bei malignen Tumoren. In: Int Symp „Krebs und Alternativmedizin“, St. GallenGoogle Scholar
  25. 25.
    Issels RD, Bourier S, Bioglow JE, Gerweck LE, Wilmanns W (1985) Temperature-dependent influence of thiols upon glutathione levels in Chinese hamster ovary cells at cytotoxic concentrations. Cancer Res 45: 6219–6224PubMedGoogle Scholar
  26. 26.
    Issels RD, Bourier S, Boening B, Li GC, Mak J J, Wilmanns W (1987) Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells. Cancer Res 47: 2268–2274PubMedGoogle Scholar
  27. 27.
    Issels RD, Wadepohl M, Tiling K, Mueller M, Sauer H, Wilmanns W (1988) Regional hyperthermia combined with systemic chemotherapy in advanced abdominal and pelvic tumors: First results of a pilot study employing an annular phased array applicator. Cancer Res 107: 236–243Google Scholar
  28. 28.
    Jasmin C, Ribaud P (1987) Is it justified to neglect the role of chemotherapy in the treatment of prostatic cancer? In: Prostate Cancer, Part B: Imaging techniques, radiotherapy, chemotherapy, and management issues, pp 255–258Google Scholar
  29. 29.
    Labrie E, Dupont A, Belanger A, Cusan L, Lacoursiere J, Monfette G, Laberger JG et al. (1982) New hormonal therapy in prostatic carcinoma: Combined treatment with an LHRH agonist and an antiandrogen. J Clin Invest Med 5: 267–275Google Scholar
  30. 30.
    Lawm P, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal en-hancement of radiation damage in the mouse ear. Br J Radiol 52: 315–321CrossRefGoogle Scholar
  31. 31.
    Li GC (1984) Thermal biology and physiology in clinical hyperthermia: Current status and future needs. Cancer Res 44: 4886–4893Google Scholar
  32. 32.
    Marmor JB (1979) Interactions of hyperthermia and chemotherapy in animals. Cancer Res 39: 2269–2276PubMedGoogle Scholar
  33. 33.
    Mendecki J, Friedenthal E, Botstein C (1980) Microwave applicators for localized hyperthermia treatment of cancer of the prostate. Int J Radiation Oncology Biol Phys 6: 1583–1588Google Scholar
  34. 34.
    Moskovitz B, Nitecki S, Leven D (1987) Cancer of the prostate: Is there a need for aggressive treatment? Urol Int 42: 49–52PubMedCrossRefGoogle Scholar
  35. 35.
    Nesbit RM, Baum WC (1950) Endocrine control of prostatic carcinoma. Clinical and statistical survey of 1818 cases. JAMA 143: 1317–1320Google Scholar
  36. 36.
    Nielsen OS, Overgaard J (1982) Importance of preheating temperature and time for the induction of thermotolerance in a solid tumor in vivo. Brit J Cancer 46: 894–903PubMedCrossRefGoogle Scholar
  37. 37.
    Overgaard J, Nielson OS (1983) The importance of thermotolerance for the clinical treatment with hyperthermia. Radiotherapy and Oncology 1: 167–178PubMedCrossRefGoogle Scholar
  38. 38.
    Overgaard J (1987) Some problems related to the clinical use of thermal isoeffect doses. Int J Hyperthermia 3: 329–336PubMedCrossRefGoogle Scholar
  39. 39.
    Sachs L (1974) Angewandte Statistik, 4. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  40. 40.
    Scheiblich J, Petrowicz O (1982) Radiofrequency-induced hyperthermia in the prostate. J Microwave Power 17Google Scholar
  41. 41.
    Schroeder FH (1987) LHRH-Analoge bei der Behandlung des metastasierenden Prostatakarzinoms. In: Nagel R (Hrsg) Konservative Therapie des Prostatakarzinoms. Springer, Berlin Heidelberg New York Tokyo, S 101–111Google Scholar
  42. 42.
    Servadio C, Leib Z (1984) Hyperthermia in the treatment of prostate cancer. Prostate 5: 205–211PubMedCrossRefGoogle Scholar
  43. 43.
    Simpson-Herren L, Lloyd HH (1970) Kinetic parameters and growth curves for experimental tumor systems cancer. Chemo Rep 54: 143–174Google Scholar
  44. 44.
    Steenbrugge GJ von (1988) Transplantable human prostate cancer (PC-82) in athymie nude mice: A model for the study of androgen-regulated tumor growth by control. Habilitationsschrift. Erasmus Universität, RotterdamGoogle Scholar
  45. 45.
    Szmigielski S, Jeljaszewicz J, Pulverer G (1987) Thermoimmunotherapy of advanced neoplasms. Biomed Pharmacother 41: 132–138PubMedGoogle Scholar
  46. 46.
    Tannock IF (1985) Is there evidence that chemotherapy is of benefit to patients with carcinoma of the prostate? J Clin Oncol 3: 1013–1021PubMedGoogle Scholar
  47. 47.
    Urano M, Kahn J (1983) The change in hypoxic and chronically hypoxic fraction in murine tumors treated with hyperthermia. Radiat Res (Erasmus Universität Rotterdam) 96: 549–559Google Scholar
  48. 48.
    Voth B (1987) Einfluß verschiedener Zytostatika auf die DNS-Synthese einer Lymphoblasten- kultur unter hyperthermen Bedingungen. Dissertation, LMU MünchenGoogle Scholar
  49. 49.
    Waterman FM, Neriinger RE, Moylan DJ, Leeper DB (1987) Response of human tumor blood flow to local hyperthermia. Int J Radiat Oncol Biol Phys 13: 75 - 82PubMedGoogle Scholar
  50. 50.
    Wu A, Watson ML, Sternick ES (1987) Performance characteristics of a helical microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237PubMedCrossRefGoogle Scholar
  51. 51.
    Yerushalmi A, Shani A, Fishelovitz Y, Arielly J, Singer D, Levy E, Katsnelson R et al. (1986) Local microwave hyperthermia in the treatment of carcinoma of the prostate. Oncology 43: 299–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • P. G. Fabricius
    • 1
  1. 1.Klinikum GroßhadernUrologische Klinik und Poliklinik der LMUMünchen 70Germany

Personalised recommendations