Skip to main content

Mosaic Cycles in the Marine Benthos

  • Chapter
The Mosaic-Cycle Concept of Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 85))

Abstract

In community succession, temporal changes are caused by a combination of autogenic and allogenic, deterministic and stochastic processes (Tansley 1920; Pickett and McDonnell 1989). Where such a succession starts from virgin sites, a progressive sere may be observed. Sooner or later, however, patches undergo cyclic changes, drift out of phase and a mosaic of species or age classes becomes established (Fig. 1; Cooper 1923; Watt 1947; Remmert 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WH (1978) Coral reef morphogenesis: a multidimensional model. Science 202: 831–837

    PubMed  CAS  Google Scholar 

  • Aller RC, Yingst JY (1978) Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata ( Leidg ). J Mar Res 36: 201–254

    CAS  Google Scholar 

  • Arntz WE (1986) The two faces of El Nino 1982–83. Meeresforsch 31: 1–46

    Google Scholar 

  • Awramik SM, Vanyo JP (1986) Heliotropism in modern stromatilites. Science 231: 1279–1281

    PubMed  CAS  Google Scholar 

  • Barry JP (1989) Reproductive response of a marine annelid to winter storms: an analog to fire adaption in plants? Mar Ecol Prog Ser 54: 99–107

    Google Scholar 

  • Benayahu Y, Loya Y (1977) Space partitioning by stony corals, soft corals and benthic algae on the coral reefs of the northern Gulf of Eilat ( Red Sea ). Helgolander Wiss Meeresunters 30: 362–382

    Google Scholar 

  • Beukema JJ (1989) Molluscan life spans and long-term cycles in benthic communities. Oecologia 80: 570

    Google Scholar 

  • Birch LC (1971) The role of environmental heterogeneity and genetical heterogeneity in determining distribution and abundance. In: den Boer PJ, Gradwell G (eds) Dynamics of populations. Cent Agric Publ Doc, Wageningen, The Netherlands, pp 109–128

    Google Scholar 

  • Bradbury RH, Young PC (1983) Coral interactions and community structure: an analysis of spatial pattern. Mar Ecol Prog Ser 11: 265–271

    Google Scholar 

  • Brown JH, Maurer BA (1986) Body size, ecological dominance and Cope’s role. Nature (Lond) 324: 248–250

    Google Scholar 

  • Cadée GC (1976) Sediment reworking of Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth J Sea Res 10: 440–460

    Google Scholar 

  • Cane MA (1983) Oceanographic events during El Nino. Science 222: 1189–1195

    PubMed  CAS  Google Scholar 

  • Castilla JC, Bustamante RH (1989) Human exclusion from rocky intertidal of Las Cruces, Central Chile: effects on Durvillacea antarctica ( Phaeophyta, Durvilleales). Mar Ecol Prog Ser 50: 203–214

    Google Scholar 

  • Chapman ARO (1981) Stability of sea urchin dominated barren grounds following destructive grazing of kelp in St. Margaret’s Bay, eastern Canada. Mar Biol 62: 307–311

    Google Scholar 

  • Chappell J (1980) Coral morphology, diversity and reef growth. Nature (Lond) 286: 249–251

    Google Scholar 

  • Chesney EJ (1985) Succession in soft-bottom benthic environments: are pioneering species really outcompeted? In: Gibbs PE (ed) Proc 19th Eur Mar Biol Symp. Cambridge Univ Press, Cambridge, pp 277–286

    Google Scholar 

  • Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3: 169–192

    Google Scholar 

  • Connell JH (1973) Population ecology of reef-building corals. In: Joanes OA, Endean R (eds) Biology and geology of coral reefs. Academic Press, Lond New York 2: 205–246

    Google Scholar 

  • Connell JH (1975) Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press, Cambridge, pp 460–490

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310

    PubMed  CAS  Google Scholar 

  • Connell JH (1985) The consequences of variation in initial settlement vs. post settlement mortality in rocky inter-tidal communities. J Exp Mar Biol Ecol 93: 11–45

    Google Scholar 

  • Connell JH, Sousa WP (1983) On the evidence needed to judge ecological stability or persistence. Am Nat 121: 789–824

    Google Scholar 

  • Cooper WS (1923) The recent ecological history of Glacier Bay, Alaska: II. The present vegetation cycle. Ecology 4: 223–246

    Google Scholar 

  • Dayton PK (1975) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol Monogr 45: 137–159

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16: 215–245

    Google Scholar 

  • Dayton PK, Tegner MY (1984) Catastrophic storms, El Niño, and patch stability in the southern California kelp communit. Science 224: 283–285

    PubMed  CAS  Google Scholar 

  • Dayton PK, Currie V, Gerrodette T, Keller B, Rosenthal R, Tresca DV (1984) Patch dynamics and stability of southern California kelp communities. Ecol Monogr 54: 253–289

    Google Scholar 

  • Dean TA, Thies K, Lagos SL (1989) Survival of juvenile giant kelp: the effects of demographic factors, competitors, and grazers. Ecology 70: 483–495

    Google Scholar 

  • Den Boer PJ (1968) Spreading of risk and the stabilization of animal numbers. Acta Biother 18: 165–194

    Google Scholar 

  • Den Hartog C (1970) The seagrasses of the world. Verh K Ned Akad Wet (Afd Natuurk 2 R) 59: 1–275

    Google Scholar 

  • Den Hartog C (1985) Factors effecting seagrass bed formation and breakdown (abstract). Estuaries 8: 15A

    Google Scholar 

  • Denny MW (1987) Lift as a mechanism of path initiation in mussel beds. J Exp Mar Biol Ecol 113: 231–245

    Google Scholar 

  • De Wolf P (1973) Ecological observations on the mechanisms of dispersal of barnacle larvae during planktonic life and settling. Neth J Sea Res 6: 1–129

    Google Scholar 

  • Duggins DO (1980) Kelp beds and sea otters: an experimental approach. Ecology 61: 447–453

    Google Scholar 

  • Duggins DO (1983) Starfish prédation and the creation of mosaic patterns in a kelp-dominated community. Ecology 64: 1610–1619

    Google Scholar 

  • Eagle RA (1975) Natural fluctuations in a soft bottom benthic community. J Mar Biol Ass UK 55: 865–878

    Google Scholar 

  • Ebeling AW, Laur DR, Rowley RJ (1985) Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar Biol 84: 287–294

    Google Scholar 

  • Estes JA, Harrold C (1988) Sea otters, sea urchins, and kelp beds: some questions of scale. In: VanBlaricom GR, Estes JA (eds) The community ecology of sea otters. Springer, Berlin Heidelberg New York Tokyo, Ecol Stud 65: 116–150

    Google Scholar 

  • Fedra K (1977) Structural features of a north Adriatic benthic community. In: Keegan BF, O’Ceidigh PO, Boaden PJS (eds) Biology of benthic organisms. Pergamon Press, Oxford, pp 233–246

    Google Scholar 

  • Foreman RE (1977) Benthic community modification and recovery following intensive grazing by Strongylocentrotus droebachiensis. Helgolânder Wiss Meeresunters 30: 468–484

    Google Scholar 

  • Frid CLJ (1989) The role of recolonization processes in benthic communities, with special reference to the interpretation of predator-induced effects. J Exp Mar Biol Ecol 126: 163–171

    Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46: 431–456

    Google Scholar 

  • Grassle JF (1989) Species diversity in deep-sea communities. TREE 4: 12–15

    PubMed  CAS  Google Scholar 

  • Grassle JF, Grassle JP (1974) Opportunistic Ufe histories and genetic systems in marine benthic polychaetes. J Mar Res 32: 253–284

    Google Scholar 

  • Grassle JF, Sanders HL (1973) Life histories and the role of disturbance. Deep Sea Res 20: 643–659

    Google Scholar 

  • Gray JS (1977) The stability of benthic ecosystems. Helgolânder Wiss Meeresunters 30: 427–444

    Google Scholar 

  • Gray JS, Christie H (1983) Predicting long-term changes in marine benthic communities. Mar Ecol Prog Ser 13: 87–94

    Google Scholar 

  • Grigg RW (1983) Community structure, succession and development of coral reefs in Hawaii. Mar Ecol Prog Ser 11: 1–14

    Google Scholar 

  • Gruet Y (1971) Faune associée des “reciefs” éditiés par l’annélide Sabellaria alveolata (L.) en baje du Mont Saint-Michel: Banc des Hermelles. Mém Soc Sci Cherbourg 54: 1–21

    Google Scholar 

  • Gruet Y (1986) Spatio-temporal changes of sabellarian reefs built by the sedentary polychaete Sabellaria alveolata (Linne) PSZNI: Mar Ecol 7: 303–319

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, Lond New York

    Google Scholar 

  • Hay ME (1984) Patterns of fish and urchin grazing on Carribean coral reefs: are previous results typical? Ecology 64: 446–454

    Google Scholar 

  • Hiittel M (1986) Active aggregation and downshore migration in the trochid snail Umbonium vestiarium (L.) on a tropical sand flat. Ophelia 26: 221–232

    Google Scholar 

  • Hylleberg J (1975) Selection feeding by A barenicolapacifica with notes on A barenicola vagabunda and a concept of gardening in lugworms. Ophelia 14: 113–137

    Google Scholar 

  • Johnson KR, Nelson CH (1984) Side-scan sonar assessment of Gray Whale feeding in the Bering Sea. Science 225: 1150–1152

    PubMed  CAS  Google Scholar 

  • Johnson RG (1970) Variations in diversity within benthic marine communities. Am Nat 104: 285–300

    Google Scholar 

  • Johnson RG (1973) Conceptual models of benthic communities. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper and Co, San Francisco, pp 148–159

    Google Scholar 

  • Lang LC (1973) Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23: 260–279

    Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality throughout the Carribean. Science 226: 335–337

    PubMed  CAS  Google Scholar 

  • Lewis JR (1964) The ecology of rocky shores. English Univ Press, Lond

    Google Scholar 

  • Lewis JR (1977) The role of physical and biological factors in the distribution and stability of rocky shore communities. In: Keegan BF, O Ceidigh PO, Boaden PJS (eds) Biology of benthic organisms. Pergamon Press, Oxford, pp 417–424

    Google Scholar 

  • Loya Y (1976) The Red Sea coral Stylophorapistillata is an r-strategist. Nature (Lond) 259: 478–480

    Google Scholar 

  • Mann KH (1977) Destruction of kelp-beds by sea urchins: a cyclical phenomenon or irreversible degradation? Helgoländer Wiss Meeresunters 30: 455–467

    Google Scholar 

  • Mann KH (1982) Kelp, sea urchins and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970–1980. Neth J Sea Res 16: 414–423

    Google Scholar 

  • Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46: 355–393

    Google Scholar 

  • Menge BA (1983) Components of predation intensity in the low zone of the New England rocky intertidal region. Oecologia 58: 141–155

    Google Scholar 

  • Mergner H, Schuhmacher H (1974) Morphologie, Ökologie und Zonierung von Koralienriffen bei Aqaba ( Golf von Aqaba, Rotes Meer). Helgoländer Wiss Meeresunters 26: 238–358

    Google Scholar 

  • Mergner H, Schuhmacher H (1981) Quantitative Analyse der Korallenbesiedlung eines Vorriffareals bei Aqaba ( Rotes Meer ). Helgoländer Meeresunters 34: 337–354

    Google Scholar 

  • Miller RJ (1985) Succession in sea urchin and seaweed abundance in Nova Scotia, Canada. Mar Biol 84: 275–286

    Google Scholar 

  • Moreno CA, Sutherland JP, Jara FH (1984) Man as a predator in the intertidal zone of southern Chile. Oikos 42: 155–160

    Google Scholar 

  • O’Connor B, Könnecker G, McGrath D, Keegan BF (1977) Pachycerianthus multiplicatus Carlgren — biotope or biocoenesis? In: Keegan BF, Ceidigh PO, Boaden PJS (eds) Biology of benthic organisms. Pergamon Press, Oxford, pp 475–482

    Google Scholar 

  • Osman RW (1977) The establishment and development of a marine epifaunal community. Ecol Monogr 47: 37–63

    Google Scholar 

  • Paine RT (1974) Intertidal community structure. Oecologia 15: 93–120

    Google Scholar 

  • Paine RT (1976) Size-limited predation: an observational and experimental approach with the Mytilus — Pisaster interaction. Ecology 57: 858–873

    Google Scholar 

  • Paine RT (1979) Disaster, catastrophe, and local persistence of the sea palm Postelsia palmaeformis. Science 205: 685–687

    PubMed  CAS  Google Scholar 

  • Paine RT (1980) Food webs: Linkage, interaction strength and community infrastructure. J Anim Ecol 49: 667–685

    Google Scholar 

  • Paine RT (1984) Ecological determinism in the competition for space. Ecology 65: 1339–1348

    Google Scholar 

  • Paine RT, Suchanek TH (1983) Convergence of ecological processes between independently evolved competitive dominants: a tunicatemussel comparison. Evolution 37: 821–831

    Google Scholar 

  • Pearson TH, Rosenberg R (1976) A comparative study of the effects on the marine environment of wastes from the coastal industries in Scotland and Sweden. Ambio 5: 77–79

    Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16: 229–311

    Google Scholar 

  • Peterson CH (1984) Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Am Nat 124: 127–133

    Google Scholar 

  • Pickett STA, McDonnell MY (1989) Changing perspectives in community dynamics: a theory of successional forces. TREE 4: 241–245

    PubMed  CAS  Google Scholar 

  • Porter JW (1974) Community structure of coral reefs on opposite sides of the Isthmus of Panama. Science 186: 543–545

    Google Scholar 

  • Powell EN, Cummins H (1985) Are molluscan maximum life spans determined by long-term cycles in benthic communities? Oecologia 67: 177–182

    Google Scholar 

  • Reise K (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer Meeresunters 34: 413–425

    Google Scholar 

  • Reise K (1985) Tidal flat ecology. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Reise K (1987) Spatial niches and long-term performance in meiobenthic Plathelminthes of an intertidal lugworm flat. Mar Ecol Prog Ser 38: 1–11

    Google Scholar 

  • Reise K, Ax P (1979) A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar Biol 54: 225–237

    Google Scholar 

  • Remmert H (1985) Was geschieht im Klimax-Stadium? Naturwiss 72: 505–512

    Google Scholar 

  • Rhoads DC, Boyer LF (1982) The effects of marine benthos on physical properties of sediments. A successional perspective. In: McCall PL, Tevesz MJS (eds) Animal-sediment relations. Plenum Press, New York pp 3–52

    Google Scholar 

  • Rhoads DC, Young DK (4971) Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea). Mar Biol 11: 255–261

    Google Scholar 

  • Rhoads DC, McCall PL, Yingst JY (1978) Disturbance and production on the estuarine sea floor. Am Sci 66: 577–586

    Google Scholar 

  • Roughgarden J, Iwasa Y, Baxter C (1985) Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67

    Google Scholar 

  • Ruyter van Steveninck ED de, Bäk RPM (1986) Changes in abundance of coral-reef bottom components related to mass mortality of the sea urchin Diadema antillarum. Mar Ecol Prog Ser 34: 87–94

    Google Scholar 

  • Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition and biological disturbance. J Exp Mar Biol Ecol 45:245–272

    Google Scholar 

  • Sammarco PW, Levinton JS, Ogden JC (1974) Grazing and control of coral reef community structure by Diadema antillarum Philippi (Echinodermata: Echinoidea): a preliminary study. J Mar Res 32: 47–53

    Google Scholar 

  • Scheibling R (1986) Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68: 186–198

    Google Scholar 

  • Schuhmacher H (1977) Initial phases in reef development, studied at artificial reef types off Eilat, Red Sea. Helgoländer Wiss Meeresunters 30: 400–411

    Google Scholar 

  • Smith CR, Jumars PA, DeMaster DJ (1986) In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature (Lond) 323: 251–253

    Google Scholar 

  • Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49: 227–254

    Google Scholar 

  • Sousa WP, Connell JH (1985) Further comments on the evidence for multiple stable points in natural communities. Am Nat 125: 612–615

    Google Scholar 

  • Steele JH (1985) A comparison of terrestrial and marine ecological systems. Nature (Lond) 313: 355–358

    Google Scholar 

  • Steele JH, Henderson EW (1984) Modeling long-term fluctuations in fish stocks. Science 224: 985–987

    PubMed  CAS  Google Scholar 

  • Stephenson W, Endean R, Bennett I (1958) An ecological survey of the marine fauna of Low Isles, Queensland. Aust J Mar Freshw Res 9: 261–318

    Google Scholar 

  • Suchanek TH (1981) The role of disturbance in the evolution of life history strategies in the intertidal mussels Mytilus edulis and Mytilus californianus. Oecologia 50: 143–152

    Google Scholar 

  • Sutherland JP (1974) Multiple stable points in natural communities. Am Nat 108: 859–873

    Google Scholar 

  • Tansley AG (1920) The classification of vegetation and the concept of development. J Ecol 8: 118–873

    Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum Press, New York Lond, pp 479–625

    Google Scholar 

  • Thistle D (1981) Natural physical disturbances and communities of marine soft bottoms. Mar Ecol Prog Ser 6: 223–228

    Google Scholar 

  • Thistle D, Eckman JE (1988) Response of harpacticoid copepods to habitat structure at a deep-sea site. Hydrobiologia 167 /168: 143–149

    Google Scholar 

  • Thrush SF, Roper DS (1988) Merits of macrofaunal colonization of intertidal mudflats for pollution monitoring: preliminary study. J Exp Mar Biol Ecol 116: 219–233

    Google Scholar 

  • Turner T (1983) Complexity of early and middle successional stages in a rocky intertidal surfgrass community. Oecologia 60: 56–65

    Google Scholar 

  • VanBlaricom GR (1982) Experimental analyses of structural regulation in a marine sand community exposed to oceanic swell. Ecol Monogr 52: 283–305

    Google Scholar 

  • VanBlaricom GR (1988) Effects of foraging by sea otters on mussel-dominated intertidal communities. In: VanBlaricom GR, Estes JA (eds) The community ecology of sea otters. Springer, Berlin Heidelberg New York Tokyo, Ecol Stud 65: 48–91

    Google Scholar 

  • Walbran PD, Henderson RA, Jull AJT, Head MJ (1989) Evidence from sediments of long-term Acanthaster planci predation on corals of the Great Barrier Reef. Science 245: 847–850

    PubMed  CAS  Google Scholar 

  • Wallace CC, Watt A, Bui GD (1986) Recruitment of juvenile corals onto coral tables preyed upon by Acanthaster planci. Mar Ecol Prog Ser 32: 299–306

    Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35: 1–22

    Google Scholar 

  • Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst 7: 81–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reise, K. (1991). Mosaic Cycles in the Marine Benthos. In: Remmert, H. (eds) The Mosaic-Cycle Concept of Ecosystems. Ecological Studies, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75650-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75650-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75652-8

  • Online ISBN: 978-3-642-75650-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics