Skip to main content

Non — Conventional Ventilation

  • Conference paper
  • 41 Accesses

Abstract

During spontaneous breathing or conventional mechanical Ventilation, gas exchange in the lungs takes place in two physically distinct regions and by means of different underlying mechanisms. In. the conducting airways (anatomic dead space [VD]) gas transport is primarily due to convection (bulk flow), while molecular diffusion is the dominant gas transport mechanism in the alveolar region. Until recently, respiratory support was based this theoretical concept by delivering high tidal volumes exceeding dead space volume (VT > VD) at low frequencies. Ventilatory frequencies above 20/min were rarely used in adults because it was shown that low tidal volumes at normal frequencies tend to produce atelectasis. Controlled mechanical Ventilation is an accepted therapy for acute respiratory insufficiency (ARI) but by virtue of the increase in intrathoracic pressure has considerable disadvantages (Table 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volhard F: Über künstliche Atmung durch Ventilation der Trachea und eine einfache Vorrichtung zur rhytmischen künstlichen Atmung. Münch Med Wschr 1908: 5: 209–211

    Google Scholar 

  2. Meitzer SJ, Auer J: Continuous respiration without respiratory movements. J Exp Med 1909: 11: 622–625

    Article  Google Scholar 

  3. Meitzer SJ: Intratracheal insufflation. JAMA 1911: 57: 521–525

    Google Scholar 

  4. Holmdahl MH: Pulmonay uptake of oxygen, acid-base metabolism and circulation during prolonged apnea. Acta Chir Scand [Suppl] 1956: 212: 1–128

    CAS  Google Scholar 

  5. Draper WB Whitehead RW, : Diffusion respiration in the dog anesthetized with pentothal sodium. Anesthesiology 1944: 5: 262–273

    Article  CAS  Google Scholar 

  6. Frumin MJ, Epstein RM, Cohen G: Apneic oxygenation in man. Anesthesiology 1959: 20: 789–798

    Article  PubMed  CAS  Google Scholar 

  7. Gattinoni L, Agostoni A, Pesenti A, Rossi GP, Vesconie S, Fox U, Kolobow T, Uziel L, Longon F: Treatment of acute respiratory failure with low frequency positive pressure Ventilation and extracorporeal removal of CO2. Lancet 1980: 2: 292

    Article  PubMed  CAS  Google Scholar 

  8. Gattinoni L, Agostoni A, Damia G: Haemodynamic and renal function during low frequency positive pressure Ventilation with extracorporeal CO2 removal. Intensive Care Med 1980: 6: 155–160

    Article  PubMed  CAS  Google Scholar 

  9. Gattinoni L, Pesenti A, Damia G: Extracorporeal carbon dioxide removal. In: Shoemaker WC (Ed.): Textbook of Critical Care. Saunders Comp. 1989

    Google Scholar 

  10. Bindslev L, Eklung J, Norlander O, Swedenborg J, Olsson P, Nilson E, Larm O, Gouda I, Malmberg A Scholander E: Treatment of acute respiratory failure by extracorporeal carbon dioxide elimination performed with a surface heparinized artificial lung. Anesthesiology 1987: 67: 117–120

    Article  PubMed  CAS  Google Scholar 

  11. Lehnert BE, Oberdörster G, Slutsky AS: Constant-flow Ventilation of apneic dogs. J Appl Physiol 1982: 53: 483–489

    PubMed  CAS  Google Scholar 

  12. Watson JW, Burwen DR, Kamm RD, Brown R, Slutsky: Effect of flow rate on blood gases during constant flow Ventilation in dogs. Am Rev Respir Dis 1986: 133: 626–629

    PubMed  CAS  Google Scholar 

  13. Slutsky AS, Menon AS: Catheter position and blood gases during constant flow Ventilation. J Appl Physiol 1987: 61: 513–519

    Google Scholar 

  14. Perl A, Whitwam JG, Chakrabarti MF, Taylor VM: Continuous flow Ventilation without respiratory movement in cat, dog and human. Brit J Anaesth 1986: 58: 544–550

    Article  PubMed  CAS  Google Scholar 

  15. Watson JW, Kamm RD, Burwen D, Brown R, Ingenito E, Slutsky AS: Gas exchange during constant flow Ventilation with different gases. Am Rev Respir Dis 1987: 13: 420–425

    Article  Google Scholar 

  16. Vettermann J, Brucasco V, Rehder K: Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation. J Appl Physiol 1988: 64: 1864–1869

    PubMed  CAS  Google Scholar 

  17. Cybulsky IR, Abel JG, Menon AS, Salerno TA, Lichtenstein SV, Slutsky AS: Contribution of cardiogenic oscillations to gas exchange in constant-flow ventilation. J Appl Physiol 1987: 63: 564–570

    PubMed  CAS  Google Scholar 

  18. Schumacker PT, Sznajder JI, Nahum A, Wood LDH: Ventilation-perfusion inequality during constant-flow ventilation. J Appl Physiol 1987: 62: 1255–1263

    PubMed  CAS  Google Scholar 

  19. Nahum A, Sznaider JI, Wood LDH: Airway and regional alveolar pressures in constant flow ventilation (CFV). Federation Proc 1985: 44: 1384

    Google Scholar 

  20. Hachenberg T, Wendt M, Meyer J, Struckmeier O, Hermeyer G, Lawin P: Constantflow ventilation in canine experimental pulmonary emphysema. Acta Anaesthesiol Scand 1989: 33: 416–421

    Article  PubMed  CAS  Google Scholar 

  21. Hachenberg T, Meyer J, Sielenkdinper A, Knichwitz G, Haberecht H, Gulker H, Wendt M: Constant - flow ventilation during experimental left ventricular failure. Acta Anaesthesiol Scand 1990 (in press)

    Google Scholar 

  22. Wagner P D, Lavaruso L B, Goldzimmer E, Naumann P F, West J B: Distribution of ventilation-perfusion ratios in dogs with normal and abnormal lungs. J Appl Physiol 1975: 38: 1099–1109

    Google Scholar 

  23. Breen PH, Sznaider JI, Morrison P, Hatch D, Wood LDH, Craig DB: Constant flow ventilation in anesthetized patients: Efficacy and safety. Anesth Analg 1986: 65: 1161–1169

    Google Scholar 

  24. Babinski MF, Sierra OG, Smith RB, Leano E, Chavez A, Castellanos A: Clinical application of continuous flow apneic ventilation. Acta Anaesthesiol Scand 1985: 29: 50–752

    Article  Google Scholar 

  25. Jonzon A, Oberg PA, Sedin G: High frequency low tidal volume positive pressure ventilation. Acta Physiol Scand 1970: 80: 21A

    Google Scholar 

  26. Sjöstrand U: Review of the physiological rationale for the development of highfrequency positive pressure ventilation: HFPPV. Acta Anaesthesiol Scand 1977: 64: 7–27

    Article  Google Scholar 

  27. Klain M, Smith RB: High frequency percutaneous transtracheal jet ventilation. Crit Care Med 1981: 9: 47–50

    Article  Google Scholar 

  28. Brazen JM, Kamm RD, Slutsky AS: High frequency ventilation. Physiol Rev 1984: 64: 505–543

    Google Scholar 

  29. Bohn DJ, Miyasaka K, Marchak BE, Thompson WK, Froese AB, Bryan AC: Ventilation byn high-frequency oscillation. J Appl Physiol 1980: 48: 710–716

    PubMed  CAS  Google Scholar 

  30. Lunkenheimer PP, Rafflenbeul W, Keller H, Frank I, Dickhut HH, Fuhrmann C. Application of transtracheal pressure oscillations as a modification of “diffusion respiration”. Brit J Anaesth 1972: 44: 627

    Article  PubMed  CAS  Google Scholar 

  31. Permut S, Mitzner W, Weinmann G: Model of gas transport during high-frequency Ventilation. J Appl Physiol 1985: 58: 1956–1970

    Google Scholar 

  32. Goldstein D, Slutsky AS, Angram RH, Westerman P, Venegas J, Drazen J: CO2 elimination by high frequency oscillatory Ventilation (4-10 Hz) in normal subjects. Am Rev Respi Dis 1981: 123: 251–255

    CAS  Google Scholar 

  33. Fredberg JJ: Augmented diffusion in the airways can support pulmonary gas exchange. J Appl Physiol 1980: 49: 232–238

    PubMed  CAS  Google Scholar 

  34. Kaethner T, Kohl T, Scheid P: Gas concentration profiles along airways of dog lungs during high frequency Ventilation. J Appl Physiol 1984: 56: 1491–1499

    PubMed  CAS  Google Scholar 

  35. Allen JL, Frantz ID, Fredberg JJ: Regional alveolar pressure during periodic flow: dual manifestations of gas inertia. J Clin Invest 1985: 76: 620–629

    Article  PubMed  CAS  Google Scholar 

  36. Solway J, Rössing TH, Saari AF, Drazen JM: Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency Ventilation. J Appl Physiol 1986: 60: 2071–2078

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hachenberg, T. (1990). Non — Conventional Ventilation. In: Wendt, M., Lawin, P. (eds) Oxygen Transport in the Critically Ill Patient. Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75646-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75646-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52498-4

  • Online ISBN: 978-3-642-75646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics