Skip to main content

Electrophysiological Changes Due to Motor Nerve Injury

  • Conference paper
Peripheral Nerve Lesions
  • 229 Accesses

Abstract

The peripheral nerve lesions dealt with in clinical practice may be classified into four distinct categories: (a) block of impulse conduction without destruction of the axon, as observed in acute nerve compression; (b) axonal discontinuation followed by Wallerian degeneration due to nerve transection or severe traction of nerves; (c) axon stenosis, the common condition in entrapment neuropathies; and (d) double crush by two separate lesions at different levels, as may be found after nerve suture if the nerve is exposed to constriction by scar tissue. Electrophysiologically the reactions of motor nerves to such lesions cover a wide range of characteristic abnormalities that may be of diagnostic relevance. There is a well-defined basis for the coexistence of conduction block, slowing of conduction velocity, and axon degeneration in peripheral nerve compression (Gilliatt 1980). Precise analysis of each component is of clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuthnott ER, Boyd IA, Kalu KU (1980) Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. J Physiol (Lond) 308:125–157.

    CAS  Google Scholar 

  2. Baba M, Fowler CJ, Jacobs JM, Gilliatt RW (1982) Changes in peripheral nerve fibres distal to a constriction. J Neurol Scien 54:197–208.

    Article  CAS  Google Scholar 

  3. Baba M, Gilliatt RW, Jacobs JM (1983) Recovery of distal changes after nerve constriction by a ligature. J Neurol Scien 60:235–246.

    Article  CAS  Google Scholar 

  4. Baba M, Gilliatt RW, Harding AE, Reiners K (1984) Demyelination following diphtheria toxin in the presence of axonal atrophy. J Neurol Seien 64:199–211.

    Article  CAS  Google Scholar 

  5. Baba M, Matsunaga M (1984) Recovery from acute demyefinating conduction block in the presence of prolonged distal conduction delay due to peripheral nerve constriction. Electromyogr Clin Neurphysiol 24:611–617.

    CAS  Google Scholar 

  6. Bigland B, Hutter OF, Lippold OC (1953) Action potentials and tension in mammalian nerve-muscle preparations. Proc Physiol Soc 121:1–121.

    Google Scholar 

  7. Brown MC, Matthews PBC (1959) A possible explanation of the different contraction of muscle produced by synchronous and asynchronous motor volleys. J Physiol (Lond) 150:27–28.

    Google Scholar 

  8. Brown WF, Feasby TE (1984) Conduction block and denervation in Guillain-Barré polyneuropathy. Brain 107:219–239.

    Article  PubMed  Google Scholar 

  9. Bryant SH, Camerino D (1976) Chloride conductance of denervated gastrocnemius fibers from normal goast. J Neurobiol 7:229–240.

    Article  PubMed  CAS  Google Scholar 

  10. Buchthal F, Rosenfalck P (1958) Rate of impulse conduction in denervated human muscle. Electroenceph. Clin Neurophysiol 10:521–529.

    Article  PubMed  CAS  Google Scholar 

  11. Carlson J, Lais A, Dyck PJ (1979) Axonal atrophy from permanent peripheral axotomy in adult cat. Neuropath Exo Neurol 38:579–585.

    Article  CAS  Google Scholar 

  12. Cragg BG, Thomas PK (1961) Changes in conduction velocity and fibre size proximal to peripheral nerve lesion. J Physiol (Lond) 157:315–327.

    CAS  Google Scholar 

  13. Cullheim S, Risling M, Berglund S, Linda H (1984) Conduction velocities of nerve fibres proximal to muscle nerve transection in kittens and adult cats. Experimental Neurology 84:484–487.

    Article  PubMed  CAS  Google Scholar 

  14. Czeh G, Gallego R, Kudo N, Kuno M (1978) Evidence for the maintenance of motoneurone properties by muscle activity. J Physiol (Lond) 281:239–252.

    CAS  Google Scholar 

  15. Davis LA, Gordon T, Hoffer JA, Jhamandas J, Stein RB (1978) Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J Physiol 285:543–559.

    PubMed  CAS  Google Scholar 

  16. Esslen E (1977) The acute facial palsies. Springer, Berlin Heidelberg New York.

    Google Scholar 

  17. Friede RL, Miyagishi T (1972) Adjustment of the myelin sheath to changes in axon caliber. Anat Rec 172:1–13.

    Article  PubMed  CAS  Google Scholar 

  18. Fuglsang-Frederiksen A, Smith T, Hogenhaven H (1987) Motor unit firing intervals and parameters of electrical activity in normal and pathological muscle. J Neurol Seien 78:51–62.

    Article  CAS  Google Scholar 

  19. Gillespie MJ, Stein RB (1983) The relationship between axon diameter, myelin thickness and conduction velocity during atrophy of mammalian peripheral nerve. Brain Research 259:41–56.

    Article  PubMed  CAS  Google Scholar 

  20. Gilliatt RW, Taylor JC (1959) Electrical changes following section of the facial nerve. Proc Royal Soc Med 52:1080–1083.

    CAS  Google Scholar 

  21. Gilliatt RW, Hjort RJ (1972) Nerve conduction during Wallerian degeneration in the baboon. J Neurol Neurosurg Psychiat 35:335–341.

    Article  PubMed  CAS  Google Scholar 

  22. Gilliatt RW (1980) Acute compression block. In: Sumner AJ (ed) The physiology of peripheral nerve disease, chapter 9, Saunders, Philadelphia, pp 287–315.

    Google Scholar 

  23. Gilliatt RW (1981) Physical injury to peripheral nerves — physiologic and electrodiagnostic aspects. Proc Mayo Clin 56:361–370.

    PubMed  CAS  Google Scholar 

  24. Gruener R, Stern LZ, Weisz RR (1979) Conduction velocities in single fibres of diseased human muscle. Neurology 29:1293–1297.

    PubMed  CAS  Google Scholar 

  25. Gutmann E, Holubar J (1950) The degeneration of peripheral nerve fibres. J Neurol Neurosurg Psychiat 13:89–105.

    Article  PubMed  CAS  Google Scholar 

  26. Hopf HC (1974) Conduction velocity of skeletal muscle fibres under various pathological conditions. In: Hausmannowa-Petrusewicz H, Jedrzejoswska H (eds) Structure and function of normal and diseased muscle and peripheral nerve. Polish Medical Publ, Warsaw, pp 165–168.

    Google Scholar 

  27. Hopf HC, Herbort RL, Gnass M, Günther H, Lowitzsch K (1974) Fast and slow contraction times associated with fast and slow spike conduction of skeletal muscle fibres in normal subjects and in spastic hemiparesis. Z Neurol 206:193–202.

    Article  PubMed  CAS  Google Scholar 

  28. Hopf HC, Lowitzsch K (1974) Methoden zur Erkennung leichter Funktionsstörungen peripherer Nerven. Z EEG-EMG 5:142–150.

    Google Scholar 

  29. Hopf HC, Eysholdt M (1978) Impaired refractory periods of peripheral sensory nerves in multiple sclerosis. Am Neurol 4:499–501.

    Article  CAS  Google Scholar 

  30. Jewett DL, Waiden Colene A, Chimento TC, Morris JH (1985) Effects of acute nerve compression on conduction of impulse trains of increasing frequency. J Neurol Scien 67:187–199.

    Article  CAS  Google Scholar 

  31. Krarup C, Gilliatt RW (1985) Some effects of prolonged constriction on nerve regeneration in the rabbit. J Neurol Scien 68:1–14.

    Article  CAS  Google Scholar 

  32. Klaus W, Lüllmann H, Muscholl E (1960) Der Kaliumflux des normalen und denervierten Rattenzwerchfells. Pflügers Arch ges Physiol 271:761.

    Article  CAS  Google Scholar 

  33. Li Ch L, Shy MG, Wells J (1957) Some properties of mammalian skeletal muscle fibres with particular references to fibrillation potentials. J Physiol (Lond) 135:522.

    Google Scholar 

  34. Lorkovic H, Tomanek RJ (1977) Potassium and chloride conductances in normal and denervated rat muscle. J Gen Physiol 61:1–23.

    Google Scholar 

  35. Lowitzsch K, Hopf HC (1973) Refraktärperioden und frequente Impulsfortleitung im gemischten N. ulnaris des Menschen bei Polyneuropathien. Z Neurol 205:123–144.

    Article  PubMed  CAS  Google Scholar 

  36. Luco JV, Eyzaguirre C (1955) Fibrillations and hypersensitivity to ACh in denervated muscle: effect of length of degenerating nerve fibres. J Neurophysiol 18:65.

    PubMed  CAS  Google Scholar 

  37. Ludin HP (1977) Pathophysiologische Grundlagen elektromyographischer Befunde bei Neuropathien und Myopathien, 2. Aufl. Thieme, Stuttgart.

    Google Scholar 

  38. Mamoli B (1976) Zur Prognoseerstellung peripherer Fazialisparesen unter besonderer Berücksichtigung der Elektroneurographie. Wien Klin Wschr 88(Suppl. 53): 1–85.

    Google Scholar 

  39. May M, Blumenthal FS, Klein SR (1983) Acute Bell’s palsy: prognostic value of evoked electromyography, maximal stimulation, and other electrical tests. Am J Otol 5:1–121.

    PubMed  CAS  Google Scholar 

  40. Miller RG, Olney RK (1982) Persistent conduction block in compression neuropathy. Muscle & Nerve 5:154–156.

    Google Scholar 

  41. Milner TE, Stein RB (1981) The effects of axotomy on the conduction of action potentials in peripheral sensory and motor nerve fibres. J Neurol Neurosurg Psychiat 44:485–496.

    Article  PubMed  CAS  Google Scholar 

  42. Minwegen P, Friede RL (1984) Conduction velocity varies with osmotically induced changes of the area of the axon’s profile. Brain Research 297:105–113.

    Article  PubMed  CAS  Google Scholar 

  43. Olsen PZ (1975) Prediction of recovery in Bell’s palsy. Acta Neurol Scand 55(Suppl. 61):1–121.

    Google Scholar 

  44. Olney RK, Miller GR (1984) Conduction block in compression neuropathy: recognition and quantification. Muscle & Nerve 7:662–667.

    Article  CAS  Google Scholar 

  45. Parry, GJ, Linn, Diana J (1986) Transient focal conduction block following experimental occlusion of the vasa nervorum. Muscle & Nerve 9:345–348.

    Article  CAS  Google Scholar 

  46. Perticoni G, Mauro LM (1982) Prolonged conduction blocks: late evolution in axonal degeneration. Electromyogr Clin Neurophysiol 22:591–604.

    PubMed  CAS  Google Scholar 

  47. Reiners K, Gilliatt RW, Harding AE, O’Neill JH (1987) Regeneration following tibial nerve crush in the rabbit: the effect of proximal constriction. J Neurol Neurosurg Psychiat 50:6–11.

    Article  PubMed  CAS  Google Scholar 

  48. Rosenblueth A, Dempsey EW (1939) A Study of Wallerian degeneration. Am J Physiol 128:19–30.

    Google Scholar 

  49. Sedal L, Ghabriel MN, Fensheng HE, Allt G, LeQuesne Pamela M, Harrison MJG (1983) A combined morphological and electrophysiological study of conduction block in peripheral nerve. J Neurol Scien 60:293–306.

    Article  CAS  Google Scholar 

  50. Shiraishi S, LeQuesne Pamela M, Gajree T (1985) The effect vincristine on nerve regeneration in the rat. J Neurol Scien 71:9–17.

    Article  CAS  Google Scholar 

  51. Smith KJ, Bostock H, Hall SM (1982) Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J Neurol Seien 54:13–31.

    Article  CAS  Google Scholar 

  52. Williams IR, Gilliatt RE (1977) Regeneration distal to a prolonged conduction block. J Neurol Seien 33:267–273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hopf, H.C. (1990). Electrophysiological Changes Due to Motor Nerve Injury. In: Samii, M. (eds) Peripheral Nerve Lesions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75611-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75611-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75613-9

  • Online ISBN: 978-3-642-75611-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics