Skip to main content

The Response of Sensory Ganglia and Spinal Cord to Injury

  • Conference paper
Peripheral Nerve Lesions

Abstract

To achieve successful recovery of sensory functions after peripheral nerve injury, the affected population of sensory ganglion cells must (a) survive the axon injury, (b) produce axonal sprouts, (c) maintain and support the elongation of the sprouting axons, (d) participate in neuron-nonneuronal cell and neuron-target interactions, and (e) reintegrate properly in the functional system. Abundant clinical experience demonstrates that this series of events is frequently seriously disturbed. Over the last 10–15 years an increasing amount of information has accumulated which demonstrates that axotomized sensory ganglion cells undergo degenerative changes. The present report focuses on our present knowledge about the nature of these changes, the possible pathogenetic mechanisms for their development, and their possible significance for the deficient restitution of sensory functions after peripheral nerve injury.

This research was supported by the Swedish Medical Research Council (Project 5420) and by grants from the Karolinska Institute and the Åke Wibergs Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldskogius H, Arvidsson J, Grant G (1985) The reaction of primary sensory neurons to peripheral nerve injury with particular emphasis on transganglionic changes. Brain Res 10:27–46.

    Article  Google Scholar 

  • Arvidsson J (1986) Transganglionic degeneration in vibrissae innervating primary sensory neurons of the rat: a light and electron microscopic study. J Comp Neurol 249:392–403.

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson J, Ygge J, Grant G (1986) Cell loss in lumbar dorsal root ganglia and transganglionic degeneration after sciatic nerve resection in the rat. Brain Res 373:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Austin L, Langford CJ (1980) Nerve regeneration: a biochemical view. Trends in Neurosci, May:130-132.

    Google Scholar 

  • Castro-Lopes JM, Coimbra A, Grant G (1987) Ultrastructural changes of primary afferent endings in the spinal cord substantia gelatinosa during transganglionic degeneration. Neurosci 22: S713.

    Google Scholar 

  • Csillik B, Knyihar-Csillik, E (1981) Regenerative synaptogenesis in the mammalian spinal cord: dynamics of synaptochemical restoration in the Rolando substance after transganglionic degenerative atrophy. J Neural Transm 53:303–317.

    Article  Google Scholar 

  • Devor M (1983) Plasticity of spinal cord somatotopy in adult mammals: involvement of relatively ineffective synapses. Birth Defects: Original Article Series 19:287–314.

    CAS  Google Scholar 

  • Fields HL, Emson PC, Leigh BK, Gilbert RFT, Iversen LL (1980) Multiple opiate receptor sites on primary afferent fibres. Nature (Lond) 284:351–353.

    Article  CAS  Google Scholar 

  • Fitzgerald M, Wall PD, Goedert M, Emson PE (1985) Nerve growth factor counteracts the neurophysiological effects of chronic sciatic nerve section. Brain Res 332:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore SA, Leiting JE (1984) Immunostaining of astrocytes following sciatic axotomy. Anat Rec 208:61A.

    Google Scholar 

  • Heumann R, Korshing S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104:1623–1631.

    Article  PubMed  CAS  Google Scholar 

  • Horch KW, Lisney SJW (1981) Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat. J Physiol (Lond) 313:287–299.

    CAS  Google Scholar 

  • Hunt SP, Rossor MN, Emson PC, Clement-Jones V (1982) Substance P and enkephalins in spinal cord after limb amputation. Lancet 8279:1023.

    Article  Google Scholar 

  • Jessell T, Tsunoo A, Kanawawa I, Otsuka M (1979) Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res 168:247–259.

    Article  PubMed  CAS  Google Scholar 

  • Knyihar-Csillik E, Csillik B (1981) FRAP: histochemistry of the primary nociceptive neuron. Progr Histochem Cytochem, Vol 14. G. Fischer, Stuttgart New York.

    Google Scholar 

  • Markus H, Pomeranz B, Krushelnycky D (1984) Spread of saphenous somatotopic projection map in spinal cord and hypersensitivity of the foot after chronic sciatic denervation. Brain Res 296:27–39.

    Article  PubMed  CAS  Google Scholar 

  • McGregor GP, Gibson SJ, Sabate IM, Blank MA, Christofides ND, Wall PD, Polak JM, Bloom SR (1984) Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat: increased VIP and PHI in the dorsal horn. Neurosci 13:207–216.

    Article  CAS  Google Scholar 

  • McQuarrie IG (1983) Role of the axonal cytoskeleton in the regenerating nervous system. In: Seil F (ed) Nerve, organ, and tissue regeneration. Academic Press, London New York, pp 51–88.

    Google Scholar 

  • Persson J, Arvidsson J, Aldskogius H (1987) Changes in dorsal root ganglion neurons projecting to the gracile nucleus after sciatic nerve transection in the rat. Neurosci 22: S251.

    Article  Google Scholar 

  • Peyronnard JM, Messier A, Charron L, Lavoie J, Bergouignan FX, Dubreuil M (1986) Carbonic anhydrase activity in the normal and injured peripheral nervous system. Exp Neurol 93:481–499.

    Article  PubMed  CAS  Google Scholar 

  • Redshaw JD, Bisby MA (1985) Comparison of the effects of sciatic nerve crush or resection on the proteins of fast axonal transport in rat dorsal root ganglion cell axons. Exp Neurol 88:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Rich KM, Luszczynski JR, Osborne PA, Johnson EM Jr (1987) Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury. J Neurocytol 16:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, Issa VMK (1984) Peripheral nerve injury enhances central regeneration of primary sensory neurons. Nature (Lond) 309:791–793.

    Article  CAS  Google Scholar 

  • Sjöberg J, Kanje M (1987) Incorporation of (32 P) phosphate into nucleoteides of the dorsal root ganglia of regenerating rat sciatic nerve. Brain Res 415:270–274.

    Article  PubMed  Google Scholar 

  • Skene JHP, Willard M (1981) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous system. J Cell Biol 89:96–103.

    Article  PubMed  CAS  Google Scholar 

  • Wall PD, Devor M (1981) The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord. Brain Res 209:95–111.

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Wall PD (1982) Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones. Brain Res 242:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Ygge J, Aldskogius H (1984) Intercostal nerve transection and its effect on the dorsal root ganglion. A quantitative study on ganglion cell numbers and sizes. Exp Brain Res 55:402–408.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aldskogius, H. (1990). The Response of Sensory Ganglia and Spinal Cord to Injury. In: Samii, M. (eds) Peripheral Nerve Lesions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75611-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75611-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75613-9

  • Online ISBN: 978-3-642-75611-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics