Skip to main content

Muscle Response to Changes in Innervation

  • Conference paper
Peripheral Nerve Lesions

Abstract

Motoneurons and the muscle they innervate are strongly dependent on each other for their normal development, physiological behavior, and maintenance. When nerve and muscle interact to produce movement, the motor unit is the smallest functional element within this system. The unit is composed of a single motoneuron and the muscle fibers that this neuron supplies. Within the unit, there is a mutual interaction of the constituents, so that disturbances of one component do not leave the other unaffected. This complex interdependence relies on a wide range of “trophic” interactions, which are made via synaptic contact, impulse, and trophic substance transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RD, Denny-Brown D, Pearson CM (1962) Disease of muscle. Kimpton, London.

    Google Scholar 

  2. Albuquerque EX, Mclsaac RJ (1970) Fast and slow mammalian muscle after denervation. Exp Neurol 26:183.

    Article  PubMed  CAS  Google Scholar 

  3. Banker BQ, Engel AG (1986) Basic reaction of muscle. In Engel AG, Banker BQ (eds) Myology, Vol 1. McGraw-Hill, New York.

    Google Scholar 

  4. Bowden RE (1954) Factors influencing functional recovery. In: Seddon HJ (ed) Peripheral nerve injuries. Medical Research Council, Special Report Series No. 282, London, pp 298-353.

    Google Scholar 

  5. Bowden RE, Gutmann E (1944) Denervation and re-innervation of human voluntary muscle. Brain 67:273.

    Article  Google Scholar 

  6. Bray JJ, Hawken MJ, Hubbard JI, Pockett S, Wilson L (1976) The membrane potential of rat diaphragm muscle fibers and the effect of denervation. J Physiol 255:651.

    PubMed  CAS  Google Scholar 

  7. Buller AJ, Eccles JC, Eccles RM (1960) Interaction between motoneurons and muscles in respect of the characteristic speed of their responses. J Physiol 150:417.

    PubMed  CAS  Google Scholar 

  8. Card DJ (1977) Denervation: sequence of neuromuscular degenerative changes in rats and the effect of stimulation. Exp Neurol 54:251.

    Article  PubMed  CAS  Google Scholar 

  9. Davey B, Younkin SG (1978) Effect of nerve stump length on cholinesterase in denervated rat diaphragm. Exp Neurol 59:168.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez HL, Duell MJ, Festoff BW (1979) Neurotrophic control of 16S acethylcholinesterase at the vertebrate neuromuscular junction. J Neurobiol 10:441.

    Article  PubMed  CAS  Google Scholar 

  11. Fex S, Sonesson B, Thesleff S, Zelena J (1966) Nerve implants in botulinum poisened mammalian muscle. J Physiol 184:872.

    PubMed  CAS  Google Scholar 

  12. Gutmann E, Guttmann L (1944) The effect of galvanic exercise on denervated and reinnervated muscles in rabbit. J Neurol Neurosurg Psychiatry 7:7–17.

    Article  CAS  Google Scholar 

  13. Gutmann E, Zelena J (1962) Morphological changes in the denervated muscle. In Gutmann E (ed) The denervated muscle. Publishing House of the Czechoslovak Academy of Science, Prague, pp 57–102.

    Google Scholar 

  14. Hartzell HC, Fambrough DM (1972) Acetylcholine receptors. Distribution and extrajunctional density in rat diaphram after denervation correlated with acetylcholine sensitivity. J Gen Physiol 60:248.

    Article  PubMed  CAS  Google Scholar 

  15. Henderson CE (1986) Factors influencing motor nerve growth. In: Nix WA, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York Tokyo, pp 46–49.

    Google Scholar 

  16. Hudlicka O, Cotter MA, Cooper J (1986) The effect of long-term electrical stimulation on capillary supply and metabolism in fast skeletal muscle. In: Nix WA, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York Tokyo, pp 22–32.

    Google Scholar 

  17. Ironton R, Brown MC, Holland R (1978) Stimuli to intramuscular nerve growth. Brain Res 156:351.

    Article  PubMed  CAS  Google Scholar 

  18. Karpati G, Engel WK (1968) Histochemical investigation of fiber type ratios with the myofibrillar ATPase reaction in normal and denervated skeletal muscle of guinea pig. Am J Anat 122:145.

    Article  PubMed  CAS  Google Scholar 

  19. Lomo T, Westgaard RH (1975) Control of ACh sensitivity in rat muscle fibres. Cold Spring Habor Symp Quant Biol 40:263.

    Google Scholar 

  20. Lomo T, Westgaard RH, Dahl HA (1974) Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond (Biol) 187:99.

    Article  CAS  Google Scholar 

  21. Lomo T, Westgaard RH, Engebretsen L (1980) Different stimulation patterns affect contractile properties of denervated rat soleus muscle. In: Pette D (ed) Plasticity of muscle, de Gruyter, Berlin, pp 297–309.

    Google Scholar 

  22. Lux H, Schubert P, Kreuzberg G, Globus A (1970) Excitation and axonal flow: autoradiographic study on motoneurons intracellulary injected with a H3-amino acid. Ex Brain Res 10:197.

    CAS  Google Scholar 

  23. Mannion JD, Hammond R, Stephenson LW (1986) Hydraulic pouches of canine latissimus dorsi muscle. Circulation Res 58:298.

    PubMed  CAS  Google Scholar 

  24. Nemeth PM, Pette D, Vrbova G (1981) Comparison of enzyme activities among single muscle fibres within defined motor units. J Physiol 311:489.

    PubMed  CAS  Google Scholar 

  25. Nix WA (1982) The effect of low frequency electrical stimulation on the denervated extensor digitorum longus of the rabbit. Acta Neurol Scand 66:521.

    Article  PubMed  CAS  Google Scholar 

  26. Nix WA (1986) Maintenance of muscle integrity following denervation. In: Dimitrijevic MR, Kakulas BA, Vrbova G (eds) Recent achievements in restorative neurology 2: Progressive neuromuscular diseases. Karger, Basel, pp 332–340.

    Google Scholar 

  27. Nix WA (1986) Effect of electrical stimulation on denervated muscle. In: Nix WA, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York Tokyo, pp 114–124.

    Chapter  Google Scholar 

  28. Nix WA, Dahm M (1987) The effect of isometric short-term electrical stimulation on denervated muscle. Muscle & Nerve 10:136.

    Article  CAS  Google Scholar 

  29. Nix WA, Hopf HC (1983) Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res 272:21.

    Article  PubMed  CAS  Google Scholar 

  30. Nix WA, Reichmann H, Schröder JM (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch rabbit muscle. Pflügers Arch 405:141.

    Article  PubMed  CAS  Google Scholar 

  31. Pette D (1986) Regulation of phenotype expression in skeletal muscle fibers by increased contractile activity. In: Saltin B (ed) Biochemistry of exercise VI. International Series on Sport Sciences. Human Kinetics Publishers Champaign, Illinois 16:3.

    Google Scholar 

  32. Pluskai MG, Sreter FA (1983) Correlation between protein phenotype and gene expression in adult rabbit fast-twitch muscles undergoing a fast to slow fiber transformation in response to electrical stimulation in vivo. Biochem Biophys Res Commun 113:325.

    Article  Google Scholar 

  33. Reichmann H, Nix WA (1985) Changes of energy metabolism, myosin light chain composition, lactate dehydrogenase isozyme pattern and fiber type distribution of denervated fast-twitch muscle from rabbit after low frequency stimulation. Pflügers Arch 405:244.

    Article  PubMed  CAS  Google Scholar 

  34. Salafsky B, Bell J, Prewitt M (1968) Development of fibrillation potentials in denervated fast and slow skeletal muscle. J Physiol 215:637.

    CAS  Google Scholar 

  35. Salmons S, Vrbova G (1969) The influence of activity on some characteristic of mammalian fast and slow muscle. J Physiol 201:535.

    PubMed  CAS  Google Scholar 

  36. Schmitt O (1986) Treatment of idiopathic scoliosis with daily short-term electrostimulation. In: Nix WA, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York Tokyo, pp 132–143.

    Chapter  Google Scholar 

  37. Scott OM, Vrbova G, Hyde SA, Dubowitz V (1986) Effects of electrical stimulation on normal and diseased human muscle. In: Nix WA, Vrbova G (eds) Electrical stimulation and neuromuscular disorders. Springer, Berlin Heidelberg New York Tokyo, pp 125–131.

    Chapter  Google Scholar 

  38. Sunderland S (1978) Nerves and Nerve Injuries. Churchill Livingston, Edinburgh, p 508.

    Google Scholar 

  39. Sunderland S, Ray LJ (1950) Denervation changes in mammalian striated muscle. J Neurol Neurosurg Psychiat 13:159.

    Article  PubMed  CAS  Google Scholar 

  40. Weddell G, Feinstein B, Pattel RE (1944) The electrical activity of voluntary muscle in man under normal and pathological conditions. Brain 67:178.

    Article  Google Scholar 

  41. Weiss P, Edds M (1946) Spontaneous recovery of muscle following partial denervation. Am J Physiol 145:587.

    PubMed  CAS  Google Scholar 

  42. Westgaard R (1975) Influence of activity on the passive electrical properties of denervated soleus muscle fibres in rat. J Physiol 251:683.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nix, W.A. (1990). Muscle Response to Changes in Innervation. In: Samii, M. (eds) Peripheral Nerve Lesions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75611-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75611-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75613-9

  • Online ISBN: 978-3-642-75611-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics