Skip to main content

Use of Adeno-Associated Virus as a General Transduction Vector for Mammalian Cells

  • Chapter
Viral Expression Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 158))

Abstract

Adeno-associated virus (AAV) is a human virus that can be propagated either as an integrated provirus or by lytic infection (Atchison et al. 1965; Hoggan et al. 1966, 1972). The ability to form a latent infection appears to be an integral part of the AAV life cycle. Except under special circumstances (Yacobson et al. 1987; Schlehofer et al. 1986; Yalkinoglu et al. 1988), AAV requires the presence of a helper virus to initiate a productive viral infection (Fig. 1). Members of either the herpes or adenovirus families can provide the necessary helper functions (Atchison et al. 1965; Melnick et al. 1965; Hoggan et al. 1966; Buller et al. 1981; McPherson et al. 1985) and vaccinia virus can provide at least partial helper function (Schlehofer et al. 1986). In the absence of a helper virus AAV produces no progeny virus, but instead integrates into a host chromosome (Hoggan et al. 1972; Berns et al. 1975; Handa et al. 1977; Cheung et al. 1980). With rare exceptions, AAV proviruses appear to be stable. However, if a cell line that is carrying an AAV provirus (Fig. 1) is subsequently superinfected with a helper virus, the AAV genome is excised and proceeds through a normal productive infection (Hoggan et al. 1972; Cheung et al. 1980). This ability to establish a latent infection which can later be rescued appears to be a mechanism for ensuring the survival of AAV in the absence of a helper virus. The unusual life cycle of AAV has led a number of parvovirus laboratories to explore the possibility of using AAV as a general mammalian transduction vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoni BA, Rabson AB, Miller IL, Trempe JP, Chejanovsky N, Cater BJ (1991) Adeno-associated virus Rep protein inhibits human immunodeficiency virus type 1 production in human cells. J Virol 65: 396–404

    PubMed  CAS  Google Scholar 

  • Ashktorab H, Srivastava A (1989) Identification of nuclear proteins that specifically interact with the adeno-associated virus 2 inverted terminal repeat hairpin DNA. J Virol 63: 3034–3039

    PubMed  CAS  Google Scholar 

  • Atchison RW, Casto BC, Hammond WMcD (1965) Adenovirus-associated defective virus particles. Science 149: 754–756

    PubMed  CAS  Google Scholar 

  • Bachmann PA, Hoggan MD, Kurstak E, Melnick JL, Pereira HG, Tattersall P, Vago C (1979) Parvoviridae: second report. Intervirology 11: 248–254

    PubMed  CAS  Google Scholar 

  • Bantel-Schall U, zur Hausen H (1988a) Adeno-associated viruses inhibit SV40 DNA amplification and replication of Herpes simplex virus in SV40-transformed hamster cells. Virology 164: 64–74

    Google Scholar 

  • Bantel-Schall U, zur Hausen H (1988b) Dissociation of carcinogen-induced amplification and amplification of AAV DNA in a Chinese hamster cell line. Virology 166: 113–122

    Google Scholar 

  • Beaton A, Palumbo P, Berns KI (1989) Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in trans by the rep protein. J Virol 63: 4450–4454

    PubMed  CAS  Google Scholar 

  • Becerra SP, Rose JA, Hardy M, Baroudy BM, Anderson CW (1985) Direct mapping of adeno-associated virus proteins B and C: a possible ACG initiation codon. Proc Natl Acad Sci USA 82: 7919–7923

    PubMed  CAS  Google Scholar 

  • Becerra SP, Koczot F, Fabisch P, Rose JA (1988) Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. J Virol 62: 2745–2754

    PubMed  CAS  Google Scholar 

  • Berns KI (1990) Parvorviridae and their replication. In: Fields BN, Knipe DM (eds) Virology, vol 2, 2nd edn. Raven, New York, pp 1743–1763

    Google Scholar 

  • Berns KI, Adler S (1972) Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. J Virol 5: 693–699

    Google Scholar 

  • Berns KI, Bohenzky RA (1987) Adeno-associated viruses: an update. Adv Virus Res 32: 243–306

    PubMed  CAS  Google Scholar 

  • Berns KI, Hauswirth WW (1979) Adeno-associated viruses. Adv Virus Res 25: 407–449

    PubMed  CAS  Google Scholar 

  • Berns KI, Kelly TJ Jr (1974) Visualization of the inverted terminal repetition in adeno-associated virus DNA. J Mol Biol 82: 267–271

    PubMed  CAS  Google Scholar 

  • Berns KI, Rose JA (1970) Evidence for a single-stranded adeno-associated virus genome: isolation and separation of complementary single strands. J Virol 5: 693–699

    PubMed  CAS  Google Scholar 

  • Berns KI, Pinkerton TC, Thomas GF, Hoggan MD (1975) Detection of adeno-associated virus (AAV)-specific nucleotide sequences in DNA isolated from latently infected Detroit 6 cells. Virology 68: 556–560

    PubMed  CAS  Google Scholar 

  • Blacklow NR, Hoggan MD, Rowe WP (1967) Isolation of adenovirus-associated viruses from man. Proc Natl Acad Sci USA 58: 1410–1415

    PubMed  CAS  Google Scholar 

  • Blacklow NR, Hoggan MD, Kapikian AZ, Austin JB, Rowe WP (1968a) Epidemiology of adenovirus-associated virus infection in a nursery population. Am J Epidermiol 8: 368–378

    Google Scholar 

  • Blacklow NR, Hoggan MD, Rowe WP (1968b) Serological evidence for human infection with adenovirus-associated viruses. JNCI 40: 319–327

    PubMed  CAS  Google Scholar 

  • Blacklow NR, Hoggan MD, Sereno MS, Brandt CD, Kim HW, Parrott RH, Chanock RM (1971) A seroepidemiologic study of adenovirus-associated virus infections in infants and children. Am J Epidemiol 94: 359–366

    PubMed  CAS  Google Scholar 

  • Bohenzky RA, LeFebvre RB, Berns KI (1988) Sequence and symmetry requirements within the palindromic sequences of the adeno-associated virus terminal repeat. Virology 166: 316–327

    PubMed  CAS  Google Scholar 

  • Boissy R, Astell CR (1985) Escherichia coli recBC sbcB recF hosts permits the deletion-resistant propagation of plasmid clones containing the 5′-terminal palindrome of minute virus of mice. Gene 35: 179–185

    PubMed  CAS  Google Scholar 

  • Boyer HW (1969) A complementation analysis of the restriction and modification of DNA in Eschericia coli. J Mol Biol 41: 459–479

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638

    PubMed  CAS  Google Scholar 

  • Buller RM, Straus SE, Rose JA (1979) Mechanism of host restriction of adenovirus-associated virus replication in African green monkey kidney cells. J Gen Virol 43: 663–672

    PubMed  CAS  Google Scholar 

  • Buller RM, Janik JE, Sebring ED, Rose JA (1981) Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 40: 241–247

    PubMed  CAS  Google Scholar 

  • Carter BJ, Marcus-Sekura CJ, Laughlin CA, Ketner G (1983) Properties of an adenovirus type 2 mutant, Add/807, having a deletion near the right-hand genome terminus: failure to help AAV replication. Virology 126: 505–516

    PubMed  CAS  Google Scholar 

  • Cassinotti P, Weitz M, Tratschin JD (1989) Organization of the adeno-associated virus (AAV) capsid gene: mapping of a minor spliced mRNA coding for the virus capsid protein 1. Virology 167: 176–184

    Google Scholar 

  • Casto BC, Goodheart CR (1972) Inhibition of adenovirus transformation in vitro by AAV-1. Proc Soc Exp Biol Med 140: 72–78

    PubMed  CAS  Google Scholar 

  • Casto BC, Atchison RW, Hammon WMcD (1967a) Studies on the relationship between adeno-associated virus type 1 (AAV-1) and adenoviruses. I. Replication of AAV-1 in certain cell cultures and its effect on helper adenoviruses. Virology 32: 52–59

    PubMed  CAS  Google Scholar 

  • Casto BC, Armstrong JA, Atchison RW, Hammon WMcD (1967b) Studies on the relationship between adeno-associated virus type 1 (AAV-1) and adenoviruses. II. Inhibition of adenovirus plaques by AAV; its nature and specificity. Virology 33: 452–458

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1974) Palindromic base sequences and replication of eukaryotic chromosome ends. Nature 250: 467–470

    PubMed  CAS  Google Scholar 

  • Chang L-S, Shenk T (1990) The adenovirus DNA binding protein stimulates the rate of transcription directed by adenovirus and adeno-associated virus promoters. J Virol 64: 2103–2109

    PubMed  CAS  Google Scholar 

  • Chang L-S, Shi Y, Shenk T (1989) Adeno-associated virus p5 promoter contains an adenovirus E1A inducible element and a binding site for the major late transcription factor. J Virol 63: 3479–3488

    PubMed  CAS  Google Scholar 

  • Chejanovsky N, Carter BJ (1989a) Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor. Virology 171: 239–247

    PubMed  CAS  Google Scholar 

  • Chejanovsky N, Carter BJ (1989b) Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication. Virology 173: 120–128

    PubMed  CAS  Google Scholar 

  • Chejanovsky N, Carter BJ (1990) Mutation of a consensus nucleotide binding site in the adeno-associated virus rep gene generates a dominant negative phenotype for DNA replication. J Virol 64: 1764–1770

    PubMed  CAS  Google Scholar 

  • Cheung AK, Hoggan MD, Hauswirth WW, Berns KI (1980) Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol 33: 739–748

    PubMed  CAS  Google Scholar 

  • Cukor G, Blacklow NR, Kibrick S, Swan IC (1975) Effects of adeno-associated virus on cancer expression by herpesvirus-transformed hamster cells. JNCI 55: 957–959

    PubMed  CAS  Google Scholar 

  • Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61: 543–552

    PubMed  CAS  Google Scholar 

  • de la Maza LM, Carter BJ (1980a) Molecular structure of adeno-associated virus variant DNA. J Biol Chem 255: 3194–3203

    PubMed  Google Scholar 

  • de la Maza LM, Carter BJ (1980b) Heavy and light particles of adeno-associated virus. J Virol 33:1129–1137

    PubMed  Google Scholar 

  • de la Maza LM, Carter BJ (1981) Inhibition of adenovirus oncogenicity in hamsters by adeno-associated virus DNA. JNCI 67: 1323–1326

    PubMed  Google Scholar 

  • Flint J, Shenk T (1989) Adenovirus E1A protein paradigm viral transactivator. Annu Rev Genet 23: 141–161

    PubMed  CAS  Google Scholar 

  • Gerry HW, Kelly TJ Jr, Berns KI (1973) Arrangement of nucleotide sequences in adeno-associated virus DNA. J Mol Biol 79: 207–225

    PubMed  CAS  Google Scholar 

  • Gottlieb J, Muzyczka N (1988) In vitro excision of adeno-associated virus DNA from recombinant plasmids: isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences. Mol Cell Biol 6: 2513–2522

    Google Scholar 

  • Gottlieb J, Muzyczka N (1990a) Purification and characterization of HeLa endonuclease R: a G-specific mammalian endonuclease. J Biol Chem 265: 10836–10841

    PubMed  CAS  Google Scholar 

  • Gottlieb J, Muzyczka N (1990b) Substrate specificity of HeLa endonuclease R: a G-specific mammalian endonuclease. J Biol Chem 265: 10842–10850

    PubMed  CAS  Google Scholar 

  • Green MR, Roeder RG (1980a) Transcripts of the adeno-associated virus genome: mapping of the major RNAs. J Virol 36: 79–92

    PubMed  CAS  Google Scholar 

  • Green MR, Roeder RG (1980b) Definition of a novel promoter for the major adenovirus-associated virus mRNA. Cell 1: 231–242

    Google Scholar 

  • Green MR, Straus SE, Roeder RG (1980) Transcripts of the adenovirus-associated virus genome: multiple polyadenylated RNAs including a potential primary transcript. J Virol 35: 560–565

    PubMed  CAS  Google Scholar 

  • Grossman Z, Winocour E, Berns KI (1984) Recombination between simian virus 40 and adeno-associated virus: virion coinfection compared to DNA contransfection. Virology 134: 125–137

    PubMed  CAS  Google Scholar 

  • Grossman Z, Berns KI, Winocour E (1985) Structure of simian virus 40-adeno-associated virus recombinant genomes. J Virol 56: 457–465

    PubMed  CAS  Google Scholar 

  • Halbert DH, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression and host cell shutoff. J Virol 56: 250–257

    PubMed  CAS  Google Scholar 

  • Handa H, Shiroki K, Shimojo H (1977) Establishment and characterization of KB cell lines latently infected with adeno-associated virus type 1. Virology 82: 84–92

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Berns KI (1977) Origin and termination of adeno-associated virus DNA replication. Virology 78: 488–499

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Berns KI (1979) Adeno-associated virus DNA replication. Virology 93: 57–68

    PubMed  CAS  Google Scholar 

  • Hermonat PL (1989) The adeno-associated virus Rep78 gene inhibits cellular transformation by bovine papillomavirus. Virology 172: 253–261

    PubMed  CAS  Google Scholar 

  • Hermonat PL (1991) Inhibition of H-ras expression by the adeno-associated virus Rep78 transformation suppressor gene product. Cancer Research 51: 3373–3377

    PubMed  CAS  Google Scholar 

  • Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 81: 6466–6470

    PubMed  CAS  Google Scholar 

  • Hermonat PL, Labow MA, Wright R, Berns KI, Muzyczka N (1984) Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. J Virol 51: 329–333

    PubMed  CAS  Google Scholar 

  • Hoggan MD (1970) Adeno-associated viruses. Prog Med Virol 12: 211–239

    PubMed  CAS  Google Scholar 

  • Hoggan MD, Blacklow NR, Rowe WP (1966) Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA 55: 1457–1471

    Google Scholar 

  • Hoggan MD, Thomas GF, Thomas FB, Johnson FB (1972) Continuous carriage of adenovirus associated virus genome in cell culture in the absence of helper adenovirus. In: Proceedings of the fourth lepetite colloquium. Cocoyac, Mexico. North-Holland, Amsterdam, pp 243–249

    Google Scholar 

  • Huang M-M, Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63: 2605–2615

    PubMed  CAS  Google Scholar 

  • Ikegami S, Taguchi T, Ohashi M (1979) Aphidocolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275: 458–459

    Google Scholar 

  • Im D-S, Muzyczka N (1989) Factors that bind to the AAV terminal repeats. J Virol 63: 3095–3104

    PubMed  CAS  Google Scholar 

  • Im D-S, Muzyczka N (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61: 447–457

    PubMed  CAS  Google Scholar 

  • Janik JE, Huston MM, Rose JA (1981) Locations of adenovirus genes required for the replication of adenovirus-associated virus. Proc Natl Acad Sci USA 78: 1925–1929

    PubMed  CAS  Google Scholar 

  • Janik JE, Huston MM, Rose JA (1984) Adeno-associated virus proteins: origin of the capsid components. J Virol 52: 591–597

    PubMed  CAS  Google Scholar 

  • Janik JE, Huston MM, Cho K, Rose JA (1989) Efficient synthesis of adeno-associated virus structural proteins requires both adenovirus DNA binding protein and VA I RNA. Virology 168: 320–329

    PubMed  CAS  Google Scholar 

  • Jay FT, Laughlin CA, Carter BJ (1981) Eukaryotic translational control: adeno-associated virus protein synthesis is affected by a mutation in the adenovirus DNA-binding protein. Proc Natl Acad Sci USA 78: 2927–2931

    PubMed  CAS  Google Scholar 

  • Johnson FB, Ozer HL, Hoggan MD (1971) Structural proteins of adenovirus-associated virus type 3. J Virol 8: 860–863

    PubMed  CAS  Google Scholar 

  • Johnson FB, Whitaker CW, Hoggan MD (1975) Structural polypeptides of adenovirus-associated virus top component. Virology 65: 196–203

    PubMed  CAS  Google Scholar 

  • Johnson FB, Thomson TA, Taylor PA, Vlazny DA (1977) Molecular similarities among the adenovirus-associated virus polypeptides and evidence for a precursor protein. Virology 82: 1–13

    PubMed  CAS  Google Scholar 

  • Khlief SN, Myers T, Carter BJ, Trempe JP (1991) Inhibition of cellular transformation by the adeno-associated virus rep gene. Virology 181: 738–741

    Google Scholar 

  • Kirschtein RL, Smith KO, Peters EA (1968) Inhibition of adenovirus 12 oncogenicity by adeno-associated virus. Proc Soc Exp Biol Med 128: 3322–3330

    Google Scholar 

  • Koczot FJ, Carter BJ, Garon CF, Rose JA (1973) Self-complementarity of terminal sequences within plus or minus strands of adenovirus-associated virus DNA. Proc Natl Acad Sci USA 70: 215–219

    PubMed  CAS  Google Scholar 

  • Kotin RM, Berns KI (1989) Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology 170: 460–467

    PubMed  CAS  Google Scholar 

  • Kotin RM, Siniscalco M, Samulski RJ, Zhu X, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87: 2211–2215

    PubMed  CAS  Google Scholar 

  • Kotin RM, Menninger JC, Ward DC, Berns KI (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 10: 831–834.

    PubMed  CAS  Google Scholar 

  • Labow MA, Hermonat PL, Berns KI (1986) Positive and negative autoregulation of the adeno-associated virus type 2 genome. J Virol 60: 251–258

    PubMed  CAS  Google Scholar 

  • Labow MA, Graf LH, Berns KI (1987) Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes. Mol Cell Biol 7: 1320–1325

    PubMed  CAS  Google Scholar 

  • LaFace D, Hermonat PL, Wakeland E, Peck A (1988) Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virus vector. Virology 162: 483–486

    PubMed  CAS  Google Scholar 

  • Laughlin CA, Westphal H, Carter BJ (1979) Spliced adenovirus-associated virus RNA. Proc Natl Acad Sci USA 76: 5567–5571

    PubMed  CAS  Google Scholar 

  • Laughlin CA, Jones N, Carter BJ (1982) Effects of deletions in adenovirus region 1 genes upon replication of adeno-associated virus. J Virol 41: 868–876

    PubMed  CAS  Google Scholar 

  • Laughlin CA, Tratschin J-D, Coon H, Carter BJ (1983) Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23: 65–73

    PubMed  CAS  Google Scholar 

  • Laughlin CA, Cardellichio CB, Coon HC (1986) Latent infection of KB cells with adeno-associated virus type 2. J Virol 60: 515–524

    PubMed  CAS  Google Scholar 

  • Lebkowski JS, McNally MM, Okarma TB, Lerch LB (1988) Adeno-associated virus: a vector system-for efficient introduction of DNA into a variety of mammalian cell types. Mol Cell Biol 8: 3988–3996

    PubMed  CAS  Google Scholar 

  • Lee MYWT, Toomey NL, Wright GE (1985) Differential inhibition of human placental DNA polymerases α and δ by BuPdGTP and BuAdATP. Nucleic Acids Res 13: 8623–8630

    PubMed  CAS  Google Scholar 

  • LeFebvre RB, Riva S, Berns KI (1984) Conformation takes precedence over sequence in adeno-associated virus DNA replication. Mol Cell Biol 4: 1416–1419

    PubMed  CAS  Google Scholar 

  • Lipps BV, Mayor HD (1980) Transplacental infection with adeno-associated virus type 1 in mice. Intervirology 14: 118–123

    PubMed  CAS  Google Scholar 

  • Lipps BV, Mayor HD (1982) Defective parvoviruses acquired via the transplacental route protect mice against lethal adenovirus infection. Infect Immun 37: 200–204

    PubMed  CAS  Google Scholar 

  • Lusby E, Berns KI (1982) Mapping of the 5′ termini of two adeno-associated virus 2 RNAs in the left half of the genome. J Virol 41: 518–526

    PubMed  CAS  Google Scholar 

  • Lusby E, Fife KH, Berns KI (1980) Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J Virol 34: 402–409

    PubMed  CAS  Google Scholar 

  • Lusby E, Bohenzky R, Berns KI (1981) Inverted terminal repetitions in adeno-associated virus DNA: independence of the orientation at either end of the genome. J Virol 37: 1083–1086

    PubMed  CAS  Google Scholar 

  • Mayor HD, Torikai K, Melnick J, Mandel M (1969) Plus and minus single-stranded DNA separately encapsidated in adeno-associated satellite virions. Science 166: 1280–1282

    PubMed  CAS  Google Scholar 

  • Mayor HD, Houlditch GS, Mumford DM (1973) Influence of adeno-associated virus on adenovirus- induced tumors in hamsters. Nature New Biol 241: 44–46

    PubMed  CAS  Google Scholar 

  • Mayor HD, Drake S, Stahmann J, Mumford DM (1976) Antibodies to adeno-associated satellite virus and herpes simplex in sera from cancer patients and normal adults. Am J obstet Gynecol 126: 100–104

    PubMed  CAS  Google Scholar 

  • McCarty DM, Christensen M, Muzyczka N (1991) Sequences required for the coordinate induction of the AAV pl9 and p40 promoters by the Rep protein. J Virol 65: 2936–2945

    PubMed  CAS  Google Scholar 

  • McLaughlin SK, Collis P, Hermonat PL, Muzyczka N (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures. J Virol 62: 1963–1973

    PubMed  CAS  Google Scholar 

  • McPherson RA, Rose JA (1983) Structural proteins of adenovirus-associated virus: subspecies and their relatedness. J Virol 46: 523–529

    PubMed  CAS  Google Scholar 

  • McPherson RA, Ginsburg HS, Rose JA (1982) Adeno-associated virus helper activity of adenovirus DNA binding protein. J Virol 44: 666–673

    PubMed  CAS  Google Scholar 

  • McPherson RA, Rosenthal LJ, Rose JA (1985) Human cytomegalovirus completely helps adeno-associated virus replication. Virology 147: 217–222

    PubMed  CAS  Google Scholar 

  • Melnick JL, Mayor HD, Smith KO, Rapp F (1965) Association of 20 millimicron particles with adenoviruses. J Bacteriol 90: 271–274

    PubMed  CAS  Google Scholar 

  • Mendelson E, Trempe JP, Carter BJ (1986) Identification of the trans-active rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J Virol 60: 823–832

    PubMed  CAS  Google Scholar 

  • Mendelson E, Miller IL, Carter BJ (1988a) Expression and rescue of a nonselected marker from an integrated AAV vector. Virology 166: 154–165

    PubMed  CAS  Google Scholar 

  • Mendelson E, Smith MG, Miller IL, Carter BJ (1988b) Effect of a viral rep gene on transformation of cells by an adeno-associated virus vector. Virology 166: 612–615

    PubMed  CAS  Google Scholar 

  • Myers MW, Carter BJ (1980) Assembly of adeno-associated virus. Virology 102: 71–82

    PubMed  CAS  Google Scholar 

  • Myers MW, Laughlin CA, Jay FT, Carter BJ (1980) Adenovirus helper function for growth of adeno-associated virus: effect of temperature-sensitive mutations in adenovirus early gene region 2. J Virol 35: 65–75

    PubMed  CAS  Google Scholar 

  • Ostrove JM, Berns KI (1980) Adenovirus early region lb gene function required for rescue of latent adeno-associated virus. Virology 104: 502–506

    PubMed  CAS  Google Scholar 

  • Ostrove JM, Duckworth DH, Berns KI (1981) Inhibition of adenovirus-transformed cell oncogenicity by adeno-associated virus. Virology 113: 521–533

    PubMed  CAS  Google Scholar 

  • Parks WP, Boucher DW, Melnick JL, Taber LH, Yow MD (1970) Seroepidemiological and ecological studies of the adenovirus-associated satellite viruses. Infect Immun 2: 716–722

    PubMed  CAS  Google Scholar 

  • Pattison JR (1990) Parvoviruses medical and biological aspects. In: Fields BN, Knipe DM (eds) Virology, vol 2, 2nd edn. Raven, New York, pp 1765–1784

    Google Scholar 

  • Quinn CO, Kitchingman GR (1986) Functional analysis of the adenovirus type 5 DNA-Binding protein: site-directed mutants which are defective for adeno-associated virus helper activity. J Virol 60: 653–661

    PubMed  CAS  Google Scholar 

  • Redemann BE, Mendelson E, Carter BJ (1989) Adeno-associated virus Rep protein synthesis during productive infection. J Virol 63: 873–882

    PubMed  CAS  Google Scholar 

  • Richardson WD, Westphal WD (1981) A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell 27: 133–141

    PubMed  CAS  Google Scholar 

  • Richardson WD, Westphal WD (1984) Requirement for either early region la or early region 1b adenovirus gene products in the helper effect for adeno-associated virus. J Virol 51: 404–410

    PubMed  CAS  Google Scholar 

  • Rose JA, Koczot FJ (1972) Adenovirus-associated virus multiplication: VII. Helper requirement for viral deoxyribonucleic acid and ribonucleic acid synthesis. J Virol 10:1–8

    PubMed  CAS  Google Scholar 

  • Rose JA, Berns KI, Hoggan MD, Koczot FJ (1969) Evidence for a single-stranded adenovirus-associated virus genome: Formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 64: 863–869

    PubMed  CAS  Google Scholar 

  • Rose JA, Maizel JK, Shatkin AJ (1971) Structural proteins of adenovirus-associated viruses. J Virol 8: 766–770

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Shenk T (1988) Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs. J Virol 62: 206–210

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 79: 2077–2081

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Srivastava A, Berns KI, Muzyczka N (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33: 135–143

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61: 3096–3101

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63: 3822–3828

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Zhu X, Xia X, Brook JD, Housman DE, Epstein N, Hunter LA (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO Journal, in press

    Google Scholar 

  • Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63: 624–630

    PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ (1984) Adenovirus early region IB 58,000-dalton tumor antigen is physically associated with an early region 425,000-dalton protein in productively infected cells. J Virol 49: 692–700

    PubMed  CAS  Google Scholar 

  • Schlehofer JR, Ehrbar M, zur Hausen H (1986) Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 152: 110–117

    PubMed  CAS  Google Scholar 

  • Senepathy P, Tratschin J, Carter BJ (1984) Replication of adeno-associated virus DNA. Complementation of naturally occurring rep - mutants by a wild-type genome or an ori - mutant and correction of terminal deletions. J Mol Biol 179: 1–20

    Google Scholar 

  • Siegel G, Bates RC, Berns KI, Carter BJ, Kelly DC, Kurstak E, Tattersall P (1985) Characteristics and taxonomy of Parvoviridae. Intervirology 23: 61–73

    Google Scholar 

  • Snyder RO, Samulski RM, Muzyczka N (1990a) In vitro resolution of covalently joined AAV chromosome ends. Cell 60: 105–133

    PubMed  CAS  Google Scholar 

  • Snyder RO, Im D-S, Muzyczka N (1990b) Evidence for covalent attachment of the adeno-associated virus Rep protein to the ends of the AAV genome. J Virol 64: 6204–6213

    PubMed  CAS  Google Scholar 

  • Srivastava A, Lusby EW, Berns KI (1983) Nucleotide sequence and organization of the adeno- associated virus 2 genome. J Virol 45: 555–564

    PubMed  CAS  Google Scholar 

  • Srivastava CH, Samulski RJ, Lu L, Larsen SH, Srivastava A (1989) Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV-B19 hybrid virus. Proc Natl Acad Sci USA 86: 8078–8082

    PubMed  CAS  Google Scholar 

  • Straus SE, Sebring ED, Rose JA (1976a) Concatemers of alternating plus and minus strands are intermediates in adenovirus-associated virus DNA synthesis. Proc Natl Acad Sci USA 73: 742–746

    PubMed  CAS  Google Scholar 

  • Straus SE, Ginsburg HS, Rose JA (1976b) DNA-minus temperature-sensitive mutants of adenovirus type 5 help adenovirus-associated virus replication. J Virol 17: 140–148

    CAS  Google Scholar 

  • Thimmappaya B, Weinberger C, Schneider RJ, Shenk T (1982) Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31: 543–551

    PubMed  CAS  Google Scholar 

  • Tratschin J-D, Miller IL, Carter BJ (1984a) Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J Virol 51: 611–619

    PubMed  CAS  Google Scholar 

  • Tratschin J-D, West MHP, Sandbank T, Carter BJ (1984b) A human parvovirus, adeno-associated virus, as a eukaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 4: 2072–2081

    PubMed  CAS  Google Scholar 

  • Tratschin JD, Miller IL, Smith MG, Carter BJ (1985) Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol 5: 3251–3260

    PubMed  CAS  Google Scholar 

  • Tratschin J-D, Tal J, Carter BJ (1986) Negative and positive regulation in trans of gene expression from adeno-associated virus vectors in mammalian cells by a viral Rep gene product. Mol Cell Biol 6: 2884–2894

    PubMed  CAS  Google Scholar 

  • Trempe JP, Carter BJ (1988a) Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation. J Virol 62: 68–74

    PubMed  CAS  Google Scholar 

  • Trempe JP, Carter BJ (1988b) Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. J Virol 62: 3356–3363

    PubMed  CAS  Google Scholar 

  • Trempe JP, Mendelson E, Carter BJ (1987) Characterization of adeno-associated virus rep proteins in human cells by antibodies raised against rep expressed in Escherechia coli. Virology 161: 18–28

    PubMed  CAS  Google Scholar 

  • Tsao J, Chapman MS, Agbandjo M, Keller W, Smith K, Wu H, Luo M, Smith TJ, Rossman MG, Compans RW, Parrish CR (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 25: 1456–1464

    Google Scholar 

  • Vincent KA, Moore GK, Haigwood NL (1990) Replication and packaging of HIV envelope genes in a novel adeno-associated virus vector system. Vaccine 90: 353–359

    Google Scholar 

  • Walsh CE, Liu JM, Young NS, Nienhuis AW, Samulski RJ (1991) Gene transfer and high level of expression of a human globin gene mediated by a nove adeno-associated virus (AAV) vector. American Clinical Research/American Federation of Clinical Investigation, abstract

    Google Scholar 

  • West MHP, Trempe JP, Tratschin J-D, Carter BJ (1987) Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VAI RNA. Virology 160: 38–47

    PubMed  CAS  Google Scholar 

  • Winocour E, Callahan MF, Huberman E (1988) Perturbation of the cell cycle by adeno-associated virus. Virology 167: 393–399

    PubMed  CAS  Google Scholar 

  • Wondisford FE, Usala SJ, DeCherney GS, Castern M, Radovick S, Gyves PW, Trempe JP, Kerfoot BP, Nikodem VM, Carter BJ, Weintraub BD (1988) Cloning of the human thyrotropin β-subunit gene and transient expression of biologically active human thyrotropin after gene transfection. Mol Endocrinol 2: 32–39

    PubMed  CAS  Google Scholar 

  • Yacobson B, Koch T, Winocour E (1987) Replication of adeno-associated virus in synchronized cells without the addition of a helper virus. J Virol 61: 972–981

    Google Scholar 

  • Yacobson B, Hrynko TA, Peak MJ, Winocour E (1989) Replication of adeno-associated virus in cells irradiated with UV light at 254 nm. J Virol 63: 1023–1030

    Google Scholar 

  • Yalkinoglu AO, Heilbronn R, Burkle A, Schlehofer JR, zur Hausen H (1988) DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res 48: 3123–3125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Muzyczka, N. (1992). Use of Adeno-Associated Virus as a General Transduction Vector for Mammalian Cells. In: Muzyczka, N. (eds) Viral Expression Vectors. Current Topics in Microbiology and Immunology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75608-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75608-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75610-8

  • Online ISBN: 978-3-642-75608-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics