Skip to main content

Epstein-Barr Virus Based Expression Vectors

  • Chapter
Viral Expression Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 158))

Abstract

Eukaryotic viral vectors have played an important role in the expression and analysis of many eukaryotic genes. The field is growing at a rapid pace and is by no means mature (for contrast see the reports from the first and second Banbury Conferences on Eukaryotic Viral Vectors, Gluzman 1982; Gluzman and Hughes 1988). Although in theory it should be possible to develop a eukaryotic vector from any virus, practical considerations have led to concentration on a few well-characterized viruses, e.g., papovaviruses, adenoviruses, herpesviruses, and retroviruses. As the understanding of the underlying biology of the virus’ life cycle has matured, so too has the sophistication of specific virus based vectors. Frequently the development of virus vectors has been instrumental in dissecting the functional elements of the parent virus. Present-day eukaryotic vectors are a collection of eukaryotic elements from many different cellular and viral sources. Unfortunately, there are no simple rules for constructing the best eukaryotic vector, hence much of this field has developed from empirical trials. Furthermore, no single vector presently exists that provides a solution for all situations that require a eukaryotic vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams A (1987) Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61: 1743–1746

    PubMed  CAS  Google Scholar 

  • Adams A, Lindahl T (1975) Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA 72: 1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Ashman CR, Davidson RL (1985) High spontaneous mutation frequency of BPV shuttle vector. Somate Cell Mol Genet 11: 499–504

    Article  CAS  Google Scholar 

  • Baer B, Bankier A, Biggin M, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, Tuffnell PS, Barrell BG (1984) DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 310: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Baichwal VR, Sugden B (1988) Latency comes of age for herpesviruses. Cell 52: 787–789

    Article  PubMed  CAS  Google Scholar 

  • Birx DL, Redfield RR, Tosato G (1986) Defective regulation of Epstein-Barr virus infection in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related disorders. N Engl J Med 314: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Bodescot M, Perricaudet M (1986) Epstein-Barr virus mRNA produced by alternative splicing. Nucleic Acids Res 14: 7103–7114

    Article  PubMed  CAS  Google Scholar 

  • Bodescot M, Brison O, Pericaudet M (1986) Epsten-Barr virus transcription unit is at least 84 kilobases long. Nucleic Acids Res 14: 2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Bodescot M, Perricaudet M, Farrell PJ (1987) A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. J Virol 61: 3424–3430

    PubMed  CAS  Google Scholar 

  • Calos MP, Lebkowski JS, Botchan MR (1983) High mutation frequency in DNA transfected into mammalian cells. Proc Natl Acad Sci USA 80: 3015–3019

    Article  PubMed  CAS  Google Scholar 

  • Canfield V, Emanuel JR, Spickofsky N, Levenson R, Margolskee RF (1990) Ouabain resistant mutants of the rat Na, K-ATPase α2 isoform identified using an episomal expression vector. Mol Cell Biol 10: 1367–1372

    PubMed  CAS  Google Scholar 

  • Chevallier-Greco A, Manet E, Chavrier P, Mosnier C, Daillie J, Sergeant A (1986) Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5: 3243–3249

    PubMed  CAS  Google Scholar 

  • Chittenden T, Lupton S, Levine A (1989) Functional limits of ori P, the Epstein-Barr virus plasmid origin of replication. J Virol 63: 3016–3025

    PubMed  CAS  Google Scholar 

  • Cleary M, Dorfman RF, Sklar J (1986) Failure in immunological control of the virus: post-transplant lymphoma. In: Epstein MA, Achong BG (eds) The Epstein-Barr virus: recent advances. Wiley, New York

    Google Scholar 

  • Countryman J, Jenson H, Seibl R, Wolfe H, Miller G (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses distrupt latency. J Virol 61: 3672–3679

    PubMed  CAS  Google Scholar 

  • Dambaugh T, Biesel C, Hummel M (1980) Epstein-Barr virus (B95–8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci USA 77: 2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Dambaugh T, Hennessy K, Chamnankit L, Kieff E (1984) U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA 81: 7632–7636

    Article  PubMed  CAS  Google Scholar 

  • Dillner J, Kallin B, Alexander H, Ernberg I, Uno M, Ono Y, Klein G, Lerner RA (1986) An Epstein-Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proc Natl Acad Sci USA 83: 6641–6645

    Article  PubMed  CAS  Google Scholar 

  • DiMaio D, Corbin V, Sibley E, Maniatis T (1984) High-level expression of a cloned HLA heavy chain gene introduced into mouse cells on a bovine papillomavirus vector. Mol Cell Biol 4: 340–350

    PubMed  CAS  Google Scholar 

  • Drinkwater NR, Kleindinst DK (1986) Chemically induced mutagenesis in a shuttle vector with a low-background mutant frequency. Proc Natl Acad Sci USA 83: 3402–3406

    Article  PubMed  CAS  Google Scholar 

  • DuBridge RB, Tang P, Hsia HC, Leong P-M, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7: 379–387

    PubMed  CAS  Google Scholar 

  • Epstein MA, Achong BG (1979) The relationship of the virus to Burkitt lymphoma. In: Epstein MA, Achong BG (eds) The Epstein-Barr virus. Springer, Berlin Heidelberg New York, pp 321–327

    Chapter  Google Scholar 

  • Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Feron DT (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 81:4510–4514

    Article  PubMed  CAS  Google Scholar 

  • Fischer DK, Robert MF, Shedd D, Summers WP, Robinson JE, Wolak J, Stefano JE, Miller G (1984) Identification of Epstein-Barr nuclear antigen polypeptide in mouse and monkey cells after gene transfer with a cloned 2.9-kilobase-pair subfragment of the genome. Proc Natl Acad Sci USA 81:43–47

    Article  PubMed  CAS  Google Scholar 

  • Frade R, Barel M, Ehlin-Henriksson B, Klein G (1985) gp140, The C3d receptor of human lymphocytes, is also the Epstein-Barr virus receptor. Proc Natl Acad Sci USA 82: 1490–1493

    Article  PubMed  CAS  Google Scholar 

  • Fresen KO, Merkt G, Bornkamm GW, zur Hausen H (1977) Heterogeneity of Epstein-Barr virus originating from P3HR-1 cells. I. Studies on EBNA induction. Int J Cancer 19: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Gahn T, Schildkraut CL (1989) The Epstein-Barr virus origin of plasmid replication, ori P, contains both the initiation and termination sites of DNA replication. Cell 58: 527–535

    Article  PubMed  CAS  Google Scholar 

  • Gerber P (1972) Activation of Epstein-Barr virus by 5-bromodeoxyuridine in “virus-tree” human cells. Proc Natl Acad Sci USA 69: 83–85

    Article  PubMed  CAS  Google Scholar 

  • Glassy MC, Handley H, Hagiwara H, Royston I (1983) UC-729–6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human-human hybridomas. Proc Natl Acad Sci USA 80: 6327–6331

    Article  PubMed  CAS  Google Scholar 

  • Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Gluzman Y (ed) (1982) Eurkaryotic viral vectors. Cold Spring Harbor Laboratories, New York

    Google Scholar 

  • Gluzman Y, Hughes SH (eds) (1988) Eukaryotic viral vectors. Cold Spring Harbor Laboratories, New York

    Google Scholar 

  • Grogan E, Jensen H, Countryman J, Heston L, Gradoville L, Miller G (1987) Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci USA 84: 1332–1336

    Article  PubMed  CAS  Google Scholar 

  • Gussander E, Adams A (1984) Electron microscopic evidence for replication of circular Epstein-Barr virus genomes in latently infected Raji cells. J Virol 52: 549–556

    PubMed  CAS  Google Scholar 

  • Haase SB, Heinzel SS, Krysan PJ, Calos MP (1989) Improved EBV shuttle vectors. Mutat Res 220: 125–132

    PubMed  CAS  Google Scholar 

  • Hambor JE, Hauer CA, Shu H-K, Groger RK, Kaplan DR, Tykocinski ML (1988) Use of an Epstein-Barr virus episomal replicon for anti-sense RNA-mediated gene inhibition in a human cytotoxic T-cell clone. Proc Natl Acad Sci USA 85: 4010–4014

    Article  PubMed  CAS  Google Scholar 

  • Hammarskjold M-L, Wang S-C, Klein G (1986) High-level expression of the Epstein-Barr virus EBNA1 protein in CV1 cells and human lymphoid cells using a SV40 late replacement vector. Gene 43: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1988) Identification and characterization of ori lyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Hampar B, Derge JG, Martos LM, Walker JL (1972) Synthesis of Epstein-Barr virus after activation of the viral genome in a “virus-negative” human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine. Proc Natal Acad Sci USA 69: 78–82

    Article  CAS  Google Scholar 

  • Hampar B, Tanaka A, Nonoyama M, Derge J (1974) Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci USA 71: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580

    Article  PubMed  CAS  Google Scholar 

  • Heinzel SS, Krysan PJ, Calos MP, DuBridge RB (1988) Use of simian virus 40 replication to amplify Epstein-Barr virus shuttle vectors in human cells. J Virol 62: 3738–3746

    PubMed  CAS  Google Scholar 

  • Heller R, Song K, Villaret D, Margolskee RF, Dunne J, Hayakawa H, Ringold GM (1990) Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein-Barr virus shuttle vector cDNA libraries. J Biol Chem 264: 5708–5717

    Google Scholar 

  • Henle W, Henle G (1972) The relation of the Epstein-Barr virus to Burkitt’s lymphoma. In: Biggs RM, de-The G, Payne LN (eds) Oncogenesis and herpesviruses. IARC, Lyon

    Google Scholar 

  • Henle W, Henle G, Zajac BA, Pearson G, Waubke R, Scriba M (1970) Differential reactivity of human serums with early antigens induced by Epstein-Barr virus, Science 169: 188–190

    Article  PubMed  CAS  Google Scholar 

  • Henle W, Diehl V, Kohn G, ZurHausen H, Henle G (1987) Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157: 1064–1065

    Article  Google Scholar 

  • Hennessy K, Kieff E (1983) One of two Epstein-Barr virus nuclear antigens contains a glycine-alanine copolymer domain. Proc Natl Acad Sci USA 80: 5665–5669

    Article  PubMed  CAS  Google Scholar 

  • Hennessy K, Kieff E (1985) A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science 277: 1238–1240

    Article  Google Scholar 

  • Hennessy K, Heller M, van Santen V, Kieff E (1983) Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen. Science 220: 1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Hennessy K, Fennewald S, Kieff E (1985) A third viral nuclear protein in lymphoblasts immortalized by Epstein-Barr virus. Proc Natl Acad Sci USA 82: 5944–5948

    Article  PubMed  CAS  Google Scholar 

  • Hennessy K, Wang F, Bushman EW, Kieff E (1986) Definitive identification of a member of the Epstein-Barr virus nuclear protein 3 family. Proc Natl Acad Sci USA 83: 5693–5697

    Article  PubMed  CAS  Google Scholar 

  • Hieter P, Mann C, Snyder M, Davis RW (1985) Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40: 381–392

    Article  PubMed  CAS  Google Scholar 

  • Hirt A (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Hsiung N, Fitts R, Wilson S, Milne A, Hamer D (1984) Efficient production of hepatitis B surface antigen using a bovine papilloma virus-metallothionein vectors. J Mol Appl Genet 2: 497–506

    PubMed  CAS  Google Scholar 

  • Hudson GS, Bankier AT, Satchwell SC, Barrell BG (1985) The short unique region of the B95–8 Epstein-Barr virus genome. Virology 147: 81–98

    Article  PubMed  CAS  Google Scholar 

  • Jalanko A, Kallio A, Salminen M, Ulmanen I (1989) Efficient synthesis of influenza virus hemagglutinin in mammalian cells with an extrachromosomal Epstein-Barr virus vector. Gene 78: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Jenson HB, Farrell PJ, Miller G (987) Sequences of the Epstein-Barr virus (EBV) large internal repeat form the center of a 16-kilobase-pair palindrome of EBV (P3HR-1) heterogeneous DNA. J Virol 61: 1495–1506

    Google Scholar 

  • Kadesch T, Berg, P (1986) Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid. Mol Cell Biol 6: 2593–2601

    PubMed  CAS  Google Scholar 

  • Kallin B, Dillner J, Ernberg I, Ehlin-Hendriksson B, Rosen A, Henle W, Henle G, Klein G (1986) Four virally determined nuclear antigens are expressed in Epstein-Barr virus-transformed cells. Proc Natl Acad Sci USA 83: 1499–1503

    Article  PubMed  CAS  Google Scholar 

  • Kavathas P, Sukhatme V, Herzenberg LA, Parnes JR (1984) Isolation of the gene encoding the human T-lymphocyte differentiation antigen Leu-2 (T8) by gene transfer and cDNA subtraction. Proc Natl Acad Sci USA 81: 7688–7692

    Article  PubMed  CAS  Google Scholar 

  • Kintner CR, Sugden B (1979) The structure of the termini of the DNA of Epstein-Barr virus. Cell 17: 661–671

    Article  PubMed  CAS  Google Scholar 

  • Kioussis D, Wilson F, Daniels C, Leveton C, Taverne J, Playfiar JHL (1987) Expression and rescuing of a cloned human tumor necrosis factor gene using an EBV-based shuttle cosmid vector. EMBO J 6: 355–361

    PubMed  CAS  Google Scholar 

  • Klein G (1979) The relationship of the virus to nasopharyngeal carcinomas. In: Epstein MA, Achong BG (eds) The Epstein-Barr virus. Springer, Berlin Heidelberg New York, pp 339–350

    Chapter  Google Scholar 

  • Krysan P, Haase S, Calos P (1989) Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol 9: 1026–1033

    PubMed  CAS  Google Scholar 

  • Laux G, Freese UK, Fischer R, Polack A, Kofler E, Bornkamm GW (1988) TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162: 503–507

    Article  PubMed  CAS  Google Scholar 

  • Lebkowski JS, Clancy S, Calos MP (1985) Simian virus 40 replication in adenovirus-transformed human cells antagonizes gene expression. Nature 317: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Lehn H, Sauer G (1984) The physical state of hybrid genones containing simian virus 40 and bovine papilloma virus DNA sequences in transformed clonal cell lines. J Gen Virol 65: 1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Leyvraz S, Henle W, Chahinian AP, Perlmann C, Klein G, Gordon RE, Rosenblum M, Holland JF (1985) Association of Epstein-Barr virus with thymic carcinoma. N Engl J Med 312: 1296–1299

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich B, Jehn V (1976) Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol 102:511–530

    Article  PubMed  CAS  Google Scholar 

  • Littman DR, Thomas Y, Maddon PJ, Chess L, Axel R (1985) The isolation and sequence of the gene encoding T8: a molecule defining functional classes of T lymphocytes. Cell 40: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Lombardi L, Newcomb EW, Della-Favera R (1987) Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B-lymphocytes. Cell 49: 161–170

    Article  PubMed  CAS  Google Scholar 

  • Luka J, Kallin B, Klein G (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94: 228–231

    Article  PubMed  CAS  Google Scholar 

  • Lupton S, Levine AJ (1985) Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cell. Mol Cell Biol 5: 2533–2542

    PubMed  CAS  Google Scholar 

  • Lutfalla G, Armbruster L, Dequin S, Bertolotti R (1989) Construction of an EBNA-producing line of well differentiated human hepatoma cells and of appropriate Epstein-Barr virus based shuttle vectors. Gene 76: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Margolskee RF, Nathans D (1984) Simian virus 40 mutant T antigens with relaxed specificity for the nucleotide sequence at the viral DNA origin of replication. J Virol 49: 386–393

    PubMed  CAS  Google Scholar 

  • Margolskee RF, Kavathas P, Berg P (1988) Epstein-Barr virus shuttle vector for stable episomal replication of cDNA expression libraries in human cells. Mol Cell Biol 8: 2837–2847

    PubMed  CAS  Google Scholar 

  • Mecsas J, Sugden B (1987) Replication of plasmids derived from bovine papilloma virus type 1 and Epstein-Barr virus in cells in culture. Annu Rev Cell Biol 3: 87–108

    Article  PubMed  CAS  Google Scholar 

  • Miller G (1985) Epstein-Barr virus. In: Fields BN (ed) Virology. Raven, New York, pp 563–589

    Google Scholar 

  • Mitrani-Rosenbaum S, Maroteaux L, Mory Y, Revel M, Howley P (1983) Inducible expression of the human interferon β 1, gene linked to a bovine papilloma virus DNA vector and maintained extrachromosomally in mouse cells. Mol Cell Biol 3: 233–240

    PubMed  CAS  Google Scholar 

  • Nonoyama M, Pagano JS (1972) Separation of Epstein-Barr virus DNA from large chromosomal DNA in non-virus producing cells. Nature New Biol 238: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Oguro MO, Shimizu N, Ono Y, Takada K (1987) Both the rightward and the leftward open reading frames within the BamHI M DNA fragment of Epstein-Barr virus act as trans-activators of gene expression. J Virol 61: 3310–3313

    PubMed  CAS  Google Scholar 

  • Okayama H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2: 161–170

    PubMed  CAS  Google Scholar 

  • Okayama H, Berg P (1983) A cDNA cloning vector that permits expression of cDNA inserts in mammalian cell. Mol Cell Biol 3: 280–289

    PubMed  CAS  Google Scholar 

  • Okayama H, Berg P (1985) Bacteriophage lambda vector for transducing cDNA clone library into mammalian cell. Mol Cell Biol 5: 1136–1142

    PubMed  CAS  Google Scholar 

  • Pattengale PK, Smith RW, Gerber P (1973) Selective transformation of B lymphocytes by EB virus. Lancet ii: 93–94

    Article  Google Scholar 

  • Pintel D, Merchlinsky MJ, Ward DC (1984) Expression of minute virus of mice structural proteins in murine cell lines transformed by bovine papillomavirus-minute virus of mice plasmid chimera. J Virol 52: 320–327

    PubMed  CAS  Google Scholar 

  • Pope JH, Horne MK, Scott W (1968) Transformation of fetal human leukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3: 857–866

    Article  PubMed  CAS  Google Scholar 

  • Potter H, Weir L, Leder P (1984) Enchancer-dependent expression of human Îş immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81:7161–7165

    Article  PubMed  CAS  Google Scholar 

  • Purtillo DT, Bhawan J, DeNicola L, Hutt LM, Szymanski I, Yang JPS, Boto W, Maier R, Thorley-Lawson D (1978) Epstein-Barr virus infections in the X-linked recessive lymphoproli-ferative syndrome. Lancet i: 798–802

    Article  Google Scholar 

  • Rawlins DR, Milman G, Hayward SD, Hayward GF (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42: 859–868

    Article  PubMed  CAS  Google Scholar 

  • Razzaque A, Mizusuawa H, Seidman MM (1983) Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc Natl Acad Sci USA 80: 3010–3014

    Article  PubMed  CAS  Google Scholar 

  • Reedman BM, Klein G (1973) Cellular localization of an Epstein-Barr virus (EBV) associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11:499–520

    Article  PubMed  CAS  Google Scholar 

  • Reisman D, Sugden B (1986) trans Activation of an Epstein-Barr viral transcriptional enchancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol 6: 3838–3846

    PubMed  CAS  Google Scholar 

  • Reisman D, Yates J, Sugden B (1985) A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol 5: 1822–1832

    PubMed  CAS  Google Scholar 

  • Rooney CM, Rowe DT, Ragot T, Farrell PF (1989) The spliced BZLF1 gene a Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63:3109–3116

    PubMed  CAS  Google Scholar 

  • Shimizu N, Yamaki M, Sakuma S, Ono Y, Takada K (1988) Three Epstein-Barr virus (EBV)-determined nuclear antigens induced by the BamHI E region of EBV DNA. Int J Cancer 41: 744–751

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Koller B, Geraghty D, Orr H, Shaw S, Kavathas P, DeMars R (1986) Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells. Mol Cell Biol 6: 1074–1087

    PubMed  CAS  Google Scholar 

  • Shortle D, Nathans D (1978) Local mutagenesis: a method for generating viral mutants with base substitutions in pre-selected regions of the viral genome. Proc Natl Acad Sci USA 75: 2170–2174

    Article  PubMed  CAS  Google Scholar 

  • Shortle D, Nathan D (1979) Regulatory mutants of simian virus 40: constructed mutants with base substitutions at the origin of DNA replication. J Mol Biol 131: 801–817

    Article  PubMed  CAS  Google Scholar 

  • Shortle D, Margolskee RF, Nathans D (1979) Mutational analysis of the simian virus 40 replicon: pseudorevertants of mutants with defective replication origin. Proc Natl Acad Sci USA 76:6128–6131

    Article  PubMed  CAS  Google Scholar 

  • Skare J, Strominger JL (1980) Cloning and mapping of Bam HI endonuclease fragments of DNA from the transforming B95–8 strain of Epstein-Barr virus. Proc Natl Acad Sci USA 77:3860–3864

    Article  PubMed  CAS  Google Scholar 

  • Skare J, Farley J, Strominger JL, Fresen KO, Cho MS, zur Hausen H (1985) Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragements Y and H. J Virol 55: 286–297

    PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1: 327–341

    PubMed  CAS  Google Scholar 

  • Speck SH, Strominger JL (1985) Analysis of the transcript encoding the latent Epstein-Barr virus nuclear antigen I: a potentially polycistronic message generated by long-range splicing of several exons. Proc Natl Acad Sci USA 82: 8305–8309

    Article  PubMed  CAS  Google Scholar 

  • Speck SH, Strominger JL (1987) Epstein-Barr virus transformation. Prog Nucleic Acid Res Mol Biol 34: 189–207

    Article  PubMed  CAS  Google Scholar 

  • Strand BC, Schuster TC, Hopkins RF, Neubauer RH, Rabin H (1981) Identification of an Epstein-Barr virus nuclear antigen by fluoroimmunoelectrophoresis and radioimmunoelectrophoresis. J Virol 38: 996–1004

    Google Scholar 

  • Sugden B (1984) Expression of virus-associated functions in cells transformed in vitro by Epstein-Barr virus: Epstein-Barr virus cell surface antigen and virus-release from transformed cells. In: Purtillo DT (ed) Immune deficiency and cancer, Epstein-Barr virus and lymphoproliferative malignancies. Plenum, New York, p 165

    Google Scholar 

  • Sugden B, Warren N (1988) Plasmid origin of replication of Epstein-Barr virus, ori P, does not limit replication in cis. Mol Biol Med 5: 85–94

    PubMed  CAS  Google Scholar 

  • Sugden B, Warren N (1989) A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 63: 2644–2649

    PubMed  CAS  Google Scholar 

  • Sugden B, Phelps M, Domoradzki J (1979) Epstein-Barr virus DNA is amplified in transformed lymphocytes. J Virol 31: 590–595

    PubMed  CAS  Google Scholar 

  • Sugden B, Marsh K, Yates J (1985) A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol 5: 410–413

    PubMed  CAS  Google Scholar 

  • Summers WP, Grogan EA, Shedd D, Robert M, Lieu C-R, Miller G (1982) Stable expression in mouse cells of nuclear neoantigen after transfer of a 3.4 megadalton cloned fragment of Epstein-Barr virus DNA. Proc Natl Acad Sci USA 79: 5688–5692

    Article  PubMed  CAS  Google Scholar 

  • Takada K (1984) Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Takada K, zur Hausen H (1984) Induction of Epstein-Barr virus antigens by tumor promoters for epidermal and nonrepidermal tissues. Int J Cancer 33: 491–496

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Shimizu N, Ogura M, Oni Y (1986a) Identification of coding regions for various Epstein-Barr virus-specific antigens by gene transfer and serology. J Virol 60: 324–330

    PubMed  CAS  Google Scholar 

  • Takada K, Shimizu N, Sakuma S, Ono Y (1986b) trans Activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol 57: 1016–102

    PubMed  CAS  Google Scholar 

  • Tovy MG, Lenoir G, Begon-Lours J (1978) Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276: 270–272

    Article  Google Scholar 

  • Tykocinski ML, Shu H-K, Ayers DJ, Walter El, Getty RR, Groger RK, Hauer CA, Medof ME (1988) Glycolipid reanchoring of T-lymphocyte surface antigen CD8 using the 3′ end sequence of decay-accelerating factor’s mRNA. Proc Natl Acad Sci USA 85: 3555–3559

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Stratowa C, Schaefer-Ridder M, Doehmer J, Hofschneider PH (1983) Enhanced production of hepatitis B surface antigen in NIH 3T3 mouse fibroblasts by using extrachromosomally replicating bovine papillomavirus vector. Mol Cell Biol 3: 1032–1039

    PubMed  CAS  Google Scholar 

  • Weaver JF, McCormick F, Manos MM (1988) Production of recombinant human CSF-1 in an inducible mammalian expression system. Biotechnology 6: 287–290

    Article  CAS  Google Scholar 

  • Wysokenski D, Yates J (1989) Multiple EBNA-1 binding sites are required to form an EBNA-1 dependent enhancer and to activate a minimal replicative origin within ori P of Epstein-Barr virus. J Virol 63: 2657–2666

    PubMed  CAS  Google Scholar 

  • Yates JL, Warren N, Reisman D, Sugden B (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81: 3806–3810

    Article  PubMed  CAS  Google Scholar 

  • Yates, JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812–815

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Cheadle C, Foulke JS Jr, Drohan WN, Sarver N (1988) Utilization of an Epstein-Barr virus replicon as a eurkaryotic expression vector. Gene 62: 171–185

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Davis R (1983) Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80: 1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Zinn K, DiMaio D, Maniatis T (1983) Identification of two distinct regulatory regions adjacent to the human β-interferon gene. Cell 34: 865–879

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H, O’Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumor promoter TPA. Nature 272: 373–375

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Margolskee, R.F. (1992). Epstein-Barr Virus Based Expression Vectors. In: Muzyczka, N. (eds) Viral Expression Vectors. Current Topics in Microbiology and Immunology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75608-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75608-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75610-8

  • Online ISBN: 978-3-642-75608-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics