Skip to main content

Expression of Heterologous Sequences in Adenoviral Vectors

  • Chapter
Viral Expression Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 158))

Abstract

Adenoviruses (Ad) have served as outstanding agents in contributing to an understanding of transformation and regulation of gene expression in cultured cells (reviewed in Tooze 1981; Doerfler 1983, 1984; Ginsberg 1984). Three decades after their original isolation (Rowe et al. 1953) 41 serotypes of Ad which cause infections in over a dozen species have been identified. Initial classification was based on immunological criteria and on turmorigenicity in immunocompetent rodents, which ranges from highly oncogenic (e.g., Ad 12) to generally nononcogenic (e.g., Ad2 and Ad5). More recently DNA homology has also been included as a criterion. Because they provided the first example of a human virus capable of inducing tumors in experimental animals and because Ad is capable of transformation in vitro, there was obvious, immediate interest in them. Subsequent revelation that the Ad heavily employs much of the cellular machinery during its life cycle made the adenovirus family an excellent probe for dissecting macromolecular biosynthesis and expanded this interest. Adaptation of Ad as a vector for various applications was thus a natural consequence of the considerable wealth of information accrued about this virus. Establishing cell lines by transformation with Ad recombinants that contain heterologous genes was one obvious application. Another was its development as a vector for producing high level expression of heterologous genes, stimulated by the extremely efficient lytic expression of this virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aküsjarvi G, Svensson C, Nygård O (1987) A mechanism by which adenovirus virus-associated RNAI controls translation in a transient expression assay. Mol Cell Biol 7: 549–551

    PubMed  Google Scholar 

  • Alkhatib G, Briedis DJ (1988) High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin by using an adenovirus type 5 helper-free vector system. J Virol 62: 2718–2727

    PubMed  CAS  Google Scholar 

  • Anderson CW, Lewis JB, Baum PR, Gesteland RF (1976) Simian virus 40-specific polypeptides in Ad2+ ND1- and Ad2+ ND4-infected cells. J Virol 18: 685–692

    PubMed  CAS  Google Scholar 

  • Andersson M, Pääbo S, Nilsson T, Peterson PA (1985) Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43:215–222

    PubMed  CAS  Google Scholar 

  • Babich A, Feldman LT, Nevins JR, Darnell JE Jr, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination. Mol Cell Biol 3: 1212–1221

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J Virol 50: 202–212

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS, Darnell JE Jr (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558

    PubMed  CAS  Google Scholar 

  • Babiss LE, Friedman JM, Darnell JE Jr (1986) Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and β-globin promoters. Mol Cell Biol 6: 3798–3806

    PubMed  CAS  Google Scholar 

  • Babiss LE, Friedman JM, Darnell JE Jr (1987) Cellular promoters incorporated into the adenovirus genome. Effect of viral DNA replication on endogenous and exogenous gene transcription. J Mol Biol 193: 643–650

    PubMed  CAS  Google Scholar 

  • Ballay A, Levrero M, Buendia MA, Tiollais P, Pericaudet M (1985) In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses. EMBO J 4: 3861–3865

    PubMed  CAS  Google Scholar 

  • Barget SM, Moore C, Sharp P (1977) Spliced RNA segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74: 3171–3175

    Google Scholar 

  • Berk AJ (1986) Adenovirus promoters and El A transactivation. Annu Rev Genet 20: 45–79

    PubMed  CAS  Google Scholar 

  • Berkner KL (1988) Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 6: 616–629

    PubMed  CAS  Google Scholar 

  • Berkner KL, Sharp PA (1983) Generation of adenovirus by transfection of plasmids. Nucleic Acids Res 11:6003–6020

    PubMed  CAS  Google Scholar 

  • Berkner KL, Sharp PA (1984) Expression of dihydrofolate reductase and of the adjacent E1b region in an Ad5-dihydrofolate reductase recombinant virus. Nucleic Acids Res 12: 1925–1941

    PubMed  CAS  Google Scholar 

  • Berkner KL, Sharp PA (1985) Effect of the tripartite leader on synthesis of a non-viral protein in an adenovirus 5 recombinant. Nucleic Acids Res 13: 841–857

    PubMed  CAS  Google Scholar 

  • Berkner KL, Schaffhausen BS, Roberts TM, Sharp PA (1987) Abundant expression of polyomavirus middle T antigen and dihydrofolate reductase in an adenovirus recombinant. J Virol 61:1213–1220

    PubMed  CAS  Google Scholar 

  • Berkner KL, Boel E, Prunkard D (1988) Efficiency of translation of polycistronic messages in uninfected and adenovirus-infected cells. In: Gluzman Y, Hughes SH (eds) Viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 56–61

    Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638

    PubMed  CAS  Google Scholar 

  • Burgert HG, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41: 987–997

    PubMed  CAS  Google Scholar 

  • Burgert HG, Maryanski JL, Kvist S (1987) “E3/19K” Protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 84: 1356–1360

    PubMed  CAS  Google Scholar 

  • Castrillo JL, Carrasco L (1987) Adenovirus late protein synthesis is resistant to the inhibition of translation induced by poliovirus. J Biol Chem 262: 7328–7334

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Flint SJ (1987) Adenovirus type 2 endopeptidase: an unusual phosphoprotein enzyme matured by autocatalysis. Proc Natl Acad Sci USA 84: 714–718

    PubMed  CAS  Google Scholar 

  • Cherney CS, Wilhelm YM (1979) Differential translation in normal and adenovirus type 5-infected human cells and cell-free systems. J Virol 30: 533–542

    PubMed  CAS  Google Scholar 

  • Chinnadurai G, Chinnadurai S, Brussa J (1979) Physical mapping of a large-plaque mutation of adenovirus type 2. J Virol 32: 623–628

    PubMed  CAS  Google Scholar 

  • Chow LT, Roberts JM, Lewis JB, Broker TR (1977) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA-DNA hybrids. Cell 11:819–836

    PubMed  CAS  Google Scholar 

  • Colby WW, Shenk T (1981) Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39: 977–980

    PubMed  CAS  Google Scholar 

  • Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61: 543–552

    PubMed  CAS  Google Scholar 

  • Davidson D, Hassell JA (1987) Overproduction of polyomavirus middle T antigen in mammalian cells through the use of an adenovirus vector. J Virol 61: 1226–1239

    PubMed  CAS  Google Scholar 

  • Davis AR, Kostek B, Mason BB, Hsiao CL, Morin J, Dheer SK, Hung PP (1985) Expression of hepatitis B surface antigen with a recombinant adenovirus. Proc Natl Acad Sci USA 82: 7560–7564

    PubMed  CAS  Google Scholar 

  • Doerfler W (ed) (1983–1984) The molecular biology of adenoviruses, vols 1–3. Springer, Berlin Heidelberg New York (Current topics in microbioloy and immunology, vols 109–111)

    Google Scholar 

  • Dolph PJ, Racaniello V, Villamarin A, Palladino F, Schneider RJ (1988) The adenovirus tripartite leader may eliminate the requirement for cap-binding protein complex during translation initiation. J Virol 62: 2059–2066

    PubMed  CAS  Google Scholar 

  • Falck-Pedersen E, Logan J, Shenk T, Darnell JE Jr (1985) Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse β-major globin terminator element. Cell 40: 897–905

    PubMed  CAS  Google Scholar 

  • Falgout B, Ketner G (1987) Adenovirus early region 4 is required for efficient virus particle assembly. J Virol 61: 3759–3768

    PubMed  CAS  Google Scholar 

  • Friedman JM, Babiss LE, Clayton DF, Darnell JE Jr (1986) Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression. Mol Cell Biol 6: 3791–3797

    PubMed  CAS  Google Scholar 

  • Gaynor RB, Hillman D, Berk AJ (1984) Adenovirus early region 1A protein activates transcription of a nonviral gene introduced into mammalian cells by infection or transfection. Proc Natl Acad Sci USA 81: 1193–1197

    PubMed  CAS  Google Scholar 

  • Ghosh-Choudhury G, Graham FL (1987) Stable transfer of a mouse dihydrofolate reductase gene into a deficient cell line using human adenovirus vector. Biochem Biophys Res Commun 147: 964–973

    PubMed  CAS  Google Scholar 

  • Ghosh-Choudhury G, Haj-Ahmed Y, Graham FL (1987) Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 6: 1733–1739

    PubMed  CAS  Google Scholar 

  • Ginsberg HS (1984) The adenoviruses. Plenum, New York

    Google Scholar 

  • Gluzman Y, Reichl H, Solnick D (1982) Helper-free adenovirus type-5 vectors. In: Gluzman Y (ed) Eukaryotic viral vectors Cold Spring Harbor Laboratory, New York, pp 187–192

    Google Scholar 

  • Gooding LR, Elmore LW, Tollefson AE, Brady HA, Wold WSM (1988) A 14,700 mw protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53: 341–346

    PubMed  CAS  Google Scholar 

  • Gorman C, Padmanabhan R, Howard BH (1983) High efficiency DNA-mediated transformation of primate cells. Science 221: 551–552

    PubMed  CAS  Google Scholar 

  • Graham FL (1984a) Covalently closed circles of human adenovirus DNA are infectious. EMBO J 3: 2917–2922

    PubMed  CAS  Google Scholar 

  • Graham FL (1984b) Transformation by and oncogenicity of human adenoviruses. In: Ginsberg HS (ed) The adenoviruses Plenum, New York, pp 339–398

    Google Scholar 

  • Graham FL (1987) Growth of 293 cells in suspension culture. J Gen Virol 68: 937–940

    PubMed  Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus 5. J Gen Virol 36: 59–72

    PubMed  CAS  Google Scholar 

  • Graham FL, Rowe DT, McKinnon R, Bacchetti S, Ruben M, Branton PE (1984) Transformation by human adenoviruses. J Cell Physiol [suppl] 3: 151–163

    CAS  Google Scholar 

  • Grand RJA (1987) The structure and functions of the adenovirus early region 1 proteins. Biochem J 241: 25–38

    PubMed  CAS  Google Scholar 

  • Haj-Ahmad Y, Graham FL (1986) Development of a helper-independent human adenovirus vector and its use in the transfer of the herpes simplex virus thymidine kinase gene. J Virol 57: 267–274

    PubMed  CAS  Google Scholar 

  • Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56: 250–257

    PubMed  CAS  Google Scholar 

  • Hanahan D, Gluzman Y (1984) Rescue of functional replication origins from embedded configurations in a plasmid carrying the adenovirus genome. Mol Cell Biol 4: 302–309

    PubMed  CAS  Google Scholar 

  • Hay RT (1985a) The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo EMBO J 4: 421–426

    PubMed  CAS  Google Scholar 

  • Hay RT (1985b) The origin of adenovirus DNA replication: role of the nuclear factor I binding site in vivo J Mol Biol 186: 129–136

    PubMed  CAS  Google Scholar 

  • Hay RT, McDougall IM (1986) Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. J Gen Virol 67: 321–332

    PubMed  CAS  Google Scholar 

  • Hay RT, Stow ND, McDougall IM (1984) Replication of adenovirus mini-chromosomes. J Mol Biol 175: 493–510

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1983) The adenovirus type 5E1A transcriptional control region contains a duplicated enhancer element. Cell 33: 695–703

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1985) Sequence-independent autoregulation of the adenovirus type 5 ElA transcription unit. Mol Cell Biol 5: 3214–3221

    PubMed  CAS  Google Scholar 

  • Hearing P, Samulski RJ, Wishart WL, Shenk T (1987) Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J Virol 61: 2555–2558

    PubMed  CAS  Google Scholar 

  • Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26: 365–369

    PubMed  CAS  Google Scholar 

  • Huang A, Jacobi G, Haj-Ahmad Y, Bacchetti S (1988) Expression of the HSV-2 ribonucleotide reductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virology 163: 462–470

    PubMed  CAS  Google Scholar 

  • Hung PP, Morin JE, Lubeck MD, Barton JE, Molnar-Kimber KL, Mason BB, Dheer SK, Jarocki-Witek V, Kostek B, Zandle G, Conley AJ, Davis AR (1988) Recombinant adenovirus as a vehicle for the HBV surface antigen or HIV envelope protein genes. In: Human retroviruses, cancer and AIDS: approaches to prevention and therapy. Liss, New York, pp 349–361

    Google Scholar 

  • Jang SK, Kräusslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62: 2636–2643

    PubMed  CAS  Google Scholar 

  • Johnson DC, Ghosh-Choudhury G, Smiley JR, Falls L, Graham FL (1988) Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 164: 1–14

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1978) Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13: 181–188

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689

    PubMed  CAS  Google Scholar 

  • Kämpe O, Bellgrau D, Hammerling U, Lind P, Pääbo S, Severinsson L, Peterson PA (1983) Complex formation of class 1 transplantation antigens and a viral glycoprotein. J Biol Chem 258: 19594–10598

    Google Scholar 

  • Karlsson S, Humphries RK, Gluzman Y, Nienhuis AW (1985) Transfer of genes into hematopoietic cells using recombinant DNA viruses. Proc Natl Acad Sci USA 82: 158–162

    PubMed  CAS  Google Scholar 

  • Karlsson S, Van Doren K, Schweiger SG, Nienhuis AW, Gluzman Y (1986) Stable gene transfer and tissue-specific expression of a human globin gene using adenoviral vectors. EMBO J 5: 2377–2385

    PubMed  CAS  Google Scholar 

  • Katze MG, DeCorato D, Safer B, Galabru J, Hovanessian AG (1987) Adenovirus VAI RNA complexes with the 68,000 Mr protein kinase to regulate its autophosphorylation and activity. EMBO J 6: 689–697

    PubMed  CAS  Google Scholar 

  • Kaufman RJ (1985) Identification of the components necessary for adenovirus translation control and their utilization in cDNA expression vectors. Proc Natl Acad Sci USA 82: 689–693

    PubMed  CAS  Google Scholar 

  • Kelly TJ Jr (1984) Adenovirus DNA replication. In: Ginsberg HS (ed) The adenoviruses. Plenum, New York, pp 271–308

    Google Scholar 

  • Kelly TJ, Lewis AM (1973) Use of nondefective adenovirus-simian virus 40 hybrids for mapping the SV40 genome. J Virol 12: 643–652

    PubMed  Google Scholar 

  • Khalili K, Weinmann R. (1984) Shut-off of actin biosynthesis in adenovirus serotype-2-infected cells. J Mol Biol 175:453–468

    PubMed  CAS  Google Scholar 

  • Kvist S, Oestberg L, Persson H, Philipsson L, Peterson, P.A (1978) Molecular association between transplantation antigens and a cell surface antigen in an adenovirus-transformed cell line. Proc Natl Acad Sci USA 75: 5674–5678

    PubMed  CAS  Google Scholar 

  • Lai Fatt RB, Mak S (1982) Mapping of an adenovirus function involved in the inhibition of DNA degradation. J Virol 42: 969–977

    Google Scholar 

  • Lavery D, Fu SM, Lufkin T, Chen-Kiang S (1987) Productive infection of cultured human lymphoid cells by adenovirus. J Virol 61: 1466–1472

    PubMed  CAS  Google Scholar 

  • Levine AJ (1984) The adenovirus early proteins. Curr Top Microbiol Immunol 110: 143–167

    PubMed  CAS  Google Scholar 

  • Logan J, Shenk T (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci USA 81: 3655–3659

    PubMed  CAS  Google Scholar 

  • Mansour SL, Grodzicker T, Tjian R (1985) An adenovirus vector system used to express polyoma virus tumor antigens. Proc Natl Acad Sci USA 82: 1359–1363

    PubMed  CAS  Google Scholar 

  • Mansour SL, Grodzicker T, Tjian R (1986) Downstream sequences affect transcription initiation from the adenovirus major late promoter. Mol Cell Biol 6: 2684–2694

    PubMed  CAS  Google Scholar 

  • Mason BB, Morin JE, Davis AR, Conley AJ, Lubeck MD, Molnar-Kimber KL, Chengalvala M, Bhat B, Dheer S, Hum WT, Hung PP (1988) Development of recombinant adenovirus as a vaccine. In: Gluzman Y, Hughes SH (eds) Viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 51–55

    Google Scholar 

  • Massie B, Gluzman Y, Hassell JA (1986) Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen. Mol Cell Biol 6: 2872–2883

    PubMed  CAS  Google Scholar 

  • McGrory WJ, Bautista DS, Graham FL (1988) A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163: 614–617

    PubMed  CAS  Google Scholar 

  • Miller BW, Williams J (1987) Cellular transformation by adenovirus type 5 is influenced by the viral DNA polymerase. J Virol 61: 3630–3634

    PubMed  CAS  Google Scholar 

  • Miranda AF, Babiss LE, Fisher PB (1983) Transformation of human skeletal muscle cells by simian virus 40. Proc Natl Acad Sci USA 80: 6581–6585

    PubMed  CAS  Google Scholar 

  • Molnar-Kimber KL, Davis AR, Jarocki-Witek V, Lubek MD, Vernon SK, Conley AJ, Hung PP (1987) Characterization and assembly of hepatitis B envelope proteins expressed by recombinant adenovirus. UCLA Symp Mol Cell Biol 70: 173–187

    CAS  Google Scholar 

  • Molnar-Kimber KL, Jarocki-Witek V, Dheer SK, Vernon SK, Conley AJ, Davis AR, Hung PP (1988) Distinctive properties of the hepatitis B virus envelope proteins. J Virol 62: 407–416

    PubMed  CAS  Google Scholar 

  • Moore MA, Shenk T (1988) The adenovirus tripartite leader sequence can alter nuclear and cytoplasmic metabolism of a non-adenovirus mRNA within infected cells. Nucleic Acids Res 16: 2247–2262

    PubMed  CAS  Google Scholar 

  • Moore M, Schaack J, Baim SB, Morimoto RI, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7: 4505–4512

    PubMed  CAS  Google Scholar 

  • Morin JE, Lubeck MD, Barton JE, Conley AJ, Davis AR, Hung PP (1987) Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. Proc Natl Acad Sci USA 84: 4626–4730

    PubMed  CAS  Google Scholar 

  • Munz PL, Young CSH (1987) The creation of adenovirus genomes with viable, stable, internal redundancies centered about the E2b region. Virology 158: 52–60

    PubMed  CAS  Google Scholar 

  • Nagata Y, Diamond B, Bloom BR (1983) The generation of human monocyte/macrophage cell lines. Nature 306: 597–599

    PubMed  CAS  Google Scholar 

  • Nevins JR (1987) Regulation of early adenovirus gene expression. Microbiol Rev 51:419–430

    PubMed  CAS  Google Scholar 

  • Nevins JR, Winkler JJ (1980) Regulation of early adenovirus transcription: a protein product of early region 2 specifically represses region 4 transcription. Proc Natl Acad Sci USA 77: 1893–1897

    PubMed  CAS  Google Scholar 

  • O’Malley RP, Mariano TM, Siekierka J, Mathews MB (1986) A mechanism for the control of protein synthesis by adenovirus VA RNA,. Cell 44: 391–400

    PubMed  Google Scholar 

  • Pääbo S, Weber F, Kämpe O, Schaffner W, Peterson PA (1983) Association between transplantation antigens and a viral membrane protein synthesized from a mammalian expression vector. Cell 33: 445–453

    PubMed  Google Scholar 

  • Pääbo S, Bhat BM, Wold WSM, Peterson PA (1987) A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50:311–317

    PubMed  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325

    PubMed  CAS  Google Scholar 

  • Persson H, Jansson M, Philipson L (1980) Synthesis and genomic site for an adenovirus type 2 early glycoprotein. J Mol Biol 136: 375–394

    PubMed  CAS  Google Scholar 

  • Pilder S, Logan J, Shenk T (1984) Deletion of the gene encoding the adenovirus 5 early region IB 21,0- molecular-weight polypeptide leads to degradation of viral and host cell DNA. J Virol 52: 664–671

    PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus ElB-55k transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Powell J, Berkner K, Lebo R, Adamson J (1986) Human erythroproietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc Natl Acad Sci USA 83: 6465–6469

    PubMed  CAS  Google Scholar 

  • Rice AP, Mathews MB (1988a) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553

    PubMed  CAS  Google Scholar 

  • Rice AP, Mathews MB (1988b) Trans-activation of the human immunodeficiency virus long terminal repeat sequences, expressed in an adenovirus vector, by the adenovirus E1A 13S protein. Proc Natl Acad Sci USA 85: 4200–4204

    PubMed  CAS  Google Scholar 

  • Rowe WP, Huebner RJ, Gillmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84: 570–573

    PubMed  CAS  Google Scholar 

  • Ruben M, Bacchetti S, Graham F (1983) Covalently closed circles of adenovirus 5 DNA. Nature 301: 172–174

    PubMed  CAS  Google Scholar 

  • Ruether JE, Maderious A, Lavery D, Logan J, Fu SM, Chen-Kiang S (1986) Cell-type-specific synthesis of murine immunoglobulin μ RNA from an adenovirus vector. Mol Cell Biol 6: 123–133

    PubMed  CAS  Google Scholar 

  • Saito I, Oya Y, Yamamoto K, Yuasa T, Shimojo H (1985) Construction of nondefective adenovirus type 5 bearing a 2.8-kilobase hepatitis B virus DNA near the right end of its genome. J Virol 54:711–719

    PubMed  CAS  Google Scholar 

  • Saito I, Oya Y, Shimojo H (1986) Novel RNA family structure of hepatitis B virus expressed in human cells, using a helper-free adenovirus vector. J Virol 58: 554–560

    PubMed  CAS  Google Scholar 

  • Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63: 624–630

    PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ (1984) Adenovirus early region 1b 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 49: 692–700

    PubMed  CAS  Google Scholar 

  • Schaffhausen BS, Bockus BJ, Berkner KL, Kaplan D, Roberts TM (1987) Characterization of middle T antigen expressed by using an adenovirus expression system. J Virol 61: 1221–1225

    PubMed  CAS  Google Scholar 

  • Signäs C, Katze MG, Persson H, Philipson L (1982) An adenovirus glycoprotein binds heavy chains of class 1 transplantation antigens from man and mouse. Nature 299: 175–178

    PubMed  Google Scholar 

  • Solnick D (1981) Construction of an adenovirus-SV40 recombinant producing SV40 T antigen from an adenovirus late promoter. Cell 24: 135–143

    PubMed  CAS  Google Scholar 

  • Stillman BW (1985) Biochemical and genetic analysis of adenovirus DNA replication in vitro In: Setlow JK, Hollaender A (eds) Genetic engineering: principles and methods. Plenum, New York, pp 1–27

    Google Scholar 

  • Stow ND (1988) Cloning of a DNA fragment from the left-hand terminus of the adenovirus type 2 genome and its use in site-directed mutagenesis. J Virol 37: 171–180

    Google Scholar 

  • Subramanian T, Kuppuswamy M, Gysbers J, Mak S, Chinnadurai G (1984) 19 kDa Tumor antigen coded by early region E1b of adenovirus 2 is required for efficient synthesis and for protection of viral DNA. J Biol Chem 259: 11777–11783

    PubMed  CAS  Google Scholar 

  • Sevensson C, Akûsjarvi G (1985) Adenovirus VA RNA, mediates a translation stimulation which is not restricted to the viral mRNAs. EMBO J 4: 957–964

    Google Scholar 

  • Thimmappaya B, Weinberger C, Scheider RJ, Shenk T (1982) Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31: 543–551

    PubMed  CAS  Google Scholar 

  • Thummel C, Tjian R, Grodzicker T (1982) Construction of adenovirus expression vectors by site-directed in vivo recombination. J Mol Appl Genet 1: 435–446

    PubMed  CAS  Google Scholar 

  • Thummel C, Tjian R, Hu SH, Grodzicker T (1983) Translational control of SV40 T antigen expressed from the adenovirus late promoter. Cell 33: 455–464

    PubMed  CAS  Google Scholar 

  • Tollefson AE, Wold WSM (1988) Identification and gene mapping of a 14,700-molecular-weight protein encoded by region E3 of group C adenoviruses. J Virol 62: 33–39

    PubMed  CAS  Google Scholar 

  • Tooze J (ed) (1981) DNA tumor viruses: molecular biology of tumor viruses, 2nd edn. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (Cold Spring Harbor monograph ser, vol 10b)

    Google Scholar 

  • Van Doren K, Gluzman Y (1984) Efficient transformation of human fibroblasts by adenovirus-simian virus 40 recombinants. Mol Cell Biol 4: 1653–1656

    PubMed  Google Scholar 

  • Van Doren K, Hanahan D, Gluzman Y (1984) Infection of eucaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA. J Virol 50: 606–614

    PubMed  Google Scholar 

  • Weinberg DH, Ketner G (1983) A cell line that supports the growth of a defective early region 4 deletion mutant of human adenovirus type 2. Proc Natl Acad Sci USA 80: 5383–5386

    PubMed  CAS  Google Scholar 

  • Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57: 833–838

    PubMed  CAS  Google Scholar 

  • White E, Grodzicker T, Stillman BW (1984) Mutations in the gene encoding the adenovirus early region 1B 19,000-molecular-weight tumor antigen cause the degradation of chromosomal DNA. J Virol 52: 410–419

    PubMed  CAS  Google Scholar 

  • Williams JF (1986) Adenovirus genetics. In: Doerfler W (ed) Adenovirus DNA: the viral genome and its expression. Nijhoff, The Hague, pp 247–309

    Google Scholar 

  • Wold WSM, Cladaras C, Magie SC, Yacoub N (1984) Mapping a new gene that encodes an 11,600-molecular-weight protein in the E3 transcription unit of adenovirus 2. J Virol 52: 307–313

    PubMed  CAS  Google Scholar 

  • Yamada M, Lewis JA, Grodzicker T (1985) Overproduction of the protein product of a nonselected foreign gene carried by an adenovirus vector. Proc Natl Acad Sci USA 82: 3567–3571

    PubMed  CAS  Google Scholar 

  • Yoder SS, Berget SM (1986) Role of adenovirus type 2 early region 4 in the early-to-late switch during productive infection. J Virol 60: 779–781

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Berkner, K.L. (1992). Expression of Heterologous Sequences in Adenoviral Vectors. In: Muzyczka, N. (eds) Viral Expression Vectors. Current Topics in Microbiology and Immunology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75608-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75608-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75610-8

  • Online ISBN: 978-3-642-75608-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics