Skip to main content

Recombinant Vaccinia Viruses As Vectors for Studying T Lymphocyte Specificity and Function

  • Conference paper
Poxviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 163))

Abstract

Over the past 20 years, a steadily increasing portion of immunological research has been directed towards understanding the specificity and function of T lymphocytes. Vaccinia virus (VV) has proven to be the preferred vector for determining the specificity of T lymphocytes for individual gene products derived from a variety of organisms, including viruses, protozoa, and mammalian cells (we refer to these genes as “extrinsic genes”, their products as “extrinsic antigens” and their origin as “source organisms”) and for studying the processing and presentation of antigens to T lymphocytes by antigen presenting cells (APCs). The popularity of VV recombinants has two sources. First, the technology of producing VV recombinants is relatively straightforward and VV recombinants consistently provide high levels of expression of extrinsic antigens. Second, studies of T lymphocytes require the expression of antigens in histocompatible cells. The ability of VV to infect mice and a broad variety of mouse and human cell lines of diverse lineages that can function as APCs make them ideal vectors for studies of T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PM, Unanue ER (1984) Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J Immunol 132: 1077–1079

    PubMed  CAS  Google Scholar 

  • Andersson M, Paabo S, Nilsson T, Peterson PA (1985) Impaired intracellular transport of class I MHC antigen as a possible means for adenoviruses to evade immune surveillance. Cell 43: 215–222

    PubMed  CAS  Google Scholar 

  • Andrew ME, Coupar BE (1988) Efficacy of influenza haemagglutinin and nucleoprotein as protective antigens against influenza virus infection in mice. Scand J Immunol 28: 81–85

    PubMed  CAS  Google Scholar 

  • Andrew ME, Coupar BE, Ada GL, Boyle DB (1986) Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microb Pathog 1: 443–452

    PubMed  CAS  Google Scholar 

  • Andrew ME, Coupar BE, Boyle DB, Ada GL (1987) The roles of influenza virus haemagglutinin and nucleoprotein in protection: analysis using vaccinia virus recombinants. Scand J Immunol 25: 21–28

    PubMed  CAS  Google Scholar 

  • Ashman RB, Mullbacher A (1979) A T helper cell for anti-viral cytotoxic T cell responses. J Exp Med 150: 1277–1282

    PubMed  CAS  Google Scholar 

  • Askonas BA, Mullbacher A, Ashman RB (1982) Cytotoxic T-memory cells in virus infection and the specificity of helper T cells. Immunology 45: 79–84

    PubMed  CAS  Google Scholar 

  • Auperin DD, Esposito JJ, Lange JV, Bauer SP, Knight J, Sasso DR, McCormick JB (1988) Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection. Virus Res 9: 233–248

    PubMed  CAS  Google Scholar 

  • Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER (1985) Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317: 359–361

    PubMed  CAS  Google Scholar 

  • Barrett T, Belsham GJ, Subbarao SM, Evans SA (1989) Immunization with a vaccinia recombinant expressing the F protein protects rabbits from challenge with a lethal dose of rinderpest virus. Virology 170: 11–18

    PubMed  CAS  Google Scholar 

  • Bastin J, Rothbard J, Davey J, Jones I, Townsend A (1987) Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes. J Exp Med 168: 1935–1939

    Google Scholar 

  • Bennink JR, Yewdell JW (1988) Murine cytotoxic T lymphocyte recognition of individual influenza virus proteins: high frequency of nonresponder MHC class I alleles. J Exp Med 168: 1935–1939

    PubMed  CAS  Google Scholar 

  • Bennink JR, Yewdell JW, Gerhard W (1982) A viral polymerase involved in recognition of influenza virus-infected cells by a cytotoxic T-cell clone. Nature 296: 75–76

    PubMed  CAS  Google Scholar 

  • Bennink JR, Yewdell JW, Smith GL, Moller C, Moss B (1984) Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311: 578–579

    PubMed  CAS  Google Scholar 

  • Bennink JR, Yewdell JW, Smith GL, Moss B (1986) Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57: 786–791

    PubMed  CAS  Google Scholar 

  • Bennink JR, Yewdell JW, Smith GL, Moss B (1987) Anti-influenza virus cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein: responsiveness to individual viral antigens is major histocompatibility complex controlled. J Virol 61: 1098–1102

    PubMed  CAS  Google Scholar 

  • Bernards R, Destree A, McKenzie S, Gordon E, Weinberg RA, Panacali D (1987) Effective tumor immunotherapy directed against an oncogene-encoded product using a vaccinia virus vector. Proc Natl Acad Sci USA 84: 6854–6858

    PubMed  CAS  Google Scholar 

  • Berzofsky JA, Cease KB, Cornette JL, Spouge JL, Margalit H, Berkower IJ, Good MF, Miler LH, Delisi C (1987) Protein antigenic structures recognized by T cells: potential applications to vaccine design. Immunol Rev 98: 9–52

    PubMed  CAS  Google Scholar 

  • Biddison WE, Sharrow SO, Shearer GM (1981) T cell subpopulations required for the human cytotoxic T lymphocyte response to influenza virus: evidence for T cell help. J Immunol 127:487–491

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennet WS, Strominger JL, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennet WS, Strominger JL, Wiley DC (1987b) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigen. Nature 329: 512–518

    PubMed  CAS  Google Scholar 

  • Blancou J, Kieny MP, Lathe R, Lecocq JP, Pastoret PP, Soulebot JP, Desmettre P (1986) Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature 322: 373–375

    PubMed  CAS  Google Scholar 

  • Blancou J, Artois M, Brouchier B, Thomas I, Pastoret PP, Desmettre P, Lanquet B, Kieny MP (1989) Safety and efficacy of an antirabies vaccine consisting of recombinant vaccinia-rabies virus administered orally to fox, dog and cat. Ann Rech Vet 20: 195–204

    PubMed  CAS  Google Scholar 

  • Braciale TJ (1977) Immunologic recognition of influenza virus-infected cells. I. Generation of a virus-strain specific and a cross-reactive subpopulation of cytotoxic T cells in the response to type A influenza viruses of different subtypes. Cell Immunol 33: 423–436

    PubMed  CAS  Google Scholar 

  • Braciale TJ, Braciale VL, Henkle TJ, Sambrook J, Gething MJ (1984) Cytotoxic T lymphocyte recognition of the influenza hemagglutinin gene product expressed by DNA-mediated gene transfer. J Exp Med 159: 341–354

    PubMed  CAS  Google Scholar 

  • Braciale TJ, Braciale VL, Winkler M, Stroynowski I, Hood L, Sambrook J, Gething MJ (1987) On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes. J Exp Med 166: 678–692

    PubMed  CAS  Google Scholar 

  • Braciale TJ, Sweetser MT, Morrison LA, Kittlesen DJ, Braciale VL (1989) Class I major histocompatibility complex-restricted cytolytic T lymphocytes recognize a limited number of sites on the influenza hemagglutinin. Proc Natl Acad Sci USA 86: 277–281

    PubMed  CAS  Google Scholar 

  • Bray M, Zhao BT, Markoff L, Eckels KH, Chanock RM, Lai CJ (1989) Mice immunized with recombinant vaccinia virus expressing dengue 4 virus structural proteins with or without nonstructural protein NS1 are protected against fatal dengue virus encephalitis. J Virol 63: 2853–2856

    PubMed  CAS  Google Scholar 

  • Brochier BM, Languet B, Blancou J, Kieny MP, Lelocq JP, Costy F, Desmettre P, Pastoret PP (1988) Use of recombinant vaccinia-rabies virus for oral vaccination of fox cubs (Vulpes vulpes) against rabies. Vet Microbiol 18: 103–108

    PubMed  CAS  Google Scholar 

  • Brochier BM, Blancou J, Aubert MF, Kieny MP, Desmettre P, Pastoret PP (1989) Interaction between rabies infection and oral administration of vaccinia-rabies recombinant virus to foxes (Vulpes vulpes). J Gen Virol 70: 1601–1604

    PubMed  Google Scholar 

  • Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC (1988) A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules [published erratum appears in Nature 333: 786] Nature 332: 845–850

    PubMed  CAS  Google Scholar 

  • Burgert HG, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41: 987–997

    PubMed  CAS  Google Scholar 

  • Burgert H-G, Maryanski JL, Kvist S (1987) “E3/19” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 84: 1356–1360

    PubMed  CAS  Google Scholar 

  • Buus S, Colon S, Smith C, Freed JH, Miles C, Grey HM (1986) Interaction between a “processed” ovalbumin peptide and Ia molecules. Proc Natl Acad Sci USA 83: 3968–3971

    PubMed  CAS  Google Scholar 

  • Buus S, Sette A, Colon SM, Miles C, Grey HM (1987) The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunologic peptides. Science 235: 1353–1358

    PubMed  CAS  Google Scholar 

  • Cambridge G, Mackenzie JS, Keast D (1976) Cell-mediated immune response to influenza virus infections in mice. Infect Immun 13: 36–43

    PubMed  CAS  Google Scholar 

  • Cantin EM, Eberle R, Baldick JL, Moss B, Willey DE, Notkins AL, Openshaw H (1987) Expression of herpes simplex virus 1 glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal herpes simplex virus 1 infection. Proc Natl Acad Sci USA 84: 5908–5912

    PubMed  CAS  Google Scholar 

  • Chambers TM, Kawaoka Y, Webster RG (1988) Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin. Virology 167(2): 414–421

    PubMed  CAS  Google Scholar 

  • Chen BP, Parham P (1989) Direct binding of influenza peptides to class I HLA molecules. Nature 337: 743–745

    PubMed  CAS  Google Scholar 

  • Clegg JC, Llyod G (1987) Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protests guinea pigs against Lassa fever. Lancet 2: 186–188

    PubMed  CAS  Google Scholar 

  • Clertant P, Kieny MP, Lecocq JP, Guizani I, Chambon P, Cuzin F, Lathe R (1988) Recombinant polyoma-vaccinia viruses: T antigen expression vectors and anti-tumor immunization agents. Biochimie 70: 1075–1087

    PubMed  CAS  Google Scholar 

  • Connolly JM, Potter TA, Wormstall EM, Hansen TH (1988) The Lyt-2 molecule recognizes residues in the class I alpha-3 domain in allogeneic cytotoxic T cell responses. J Exp Med 168: 325–341.

    PubMed  CAS  Google Scholar 

  • Corcoran LM, Metcalf D, Edwards SJ, Handman E (1988) GM-CSF produced by recombinant vaccinia virus or in GM-CSF transgenic mice has no effect in vivo on murine cutaneous leishmaniasis. J Parasitol 74: 763–767

    PubMed  CAS  Google Scholar 

  • Coupar BEH, Andrew ME, Both BW, Boyle DB (1986a) Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16: 1479–1487

    PubMed  CAS  Google Scholar 

  • Coupar BEH, Andrew ME, Boyle DB, Blanden RV (1986b) Immune response to H-2Kd antigen expressed by recombinant vaccinia virus. Proc Natl Acad Sci USA 83: 7879–7882

    PubMed  CAS  Google Scholar 

  • Cox JH, Yewdell JW, Eisenlohr LC, Johnson PR, Bennink JR (1990) Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum. Science 247: 715–718

    PubMed  CAS  Google Scholar 

  • Cremer K, Wohlenberg C, Mackett M, Moss B, Notkins AL (1985a) Infectious vaccinia virus recombination express herpes simplex virus glycoprotein D and protect against lethal and latent infections of HSV. In: Quinnan GV (ed) Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York, pp 153–162

    Google Scholar 

  • Cremer KJ, Mackett M, Wohlenberg C, Notkins AL, Moss B (1985b) Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science 228: 737–740

    PubMed  CAS  Google Scholar 

  • De BK, Shaw MW, Rota PA, Harmon MW, Esposito JJ, Rott R, Cox NJ, Kendal AP (1988) Protection against virulent H5 avian influenza virus infection in chickens by an inactivated vaccine produced with recombinant vaccinia virus. Vaccine 6: 257–261

    PubMed  CAS  Google Scholar 

  • Deubel V, Kinney RM, Esposito JJ, Cropp CB, Vorndam AV, Monath TP, Trent DW (1988) Dengue 2 virus envelope protein expressed by a recombinant vaccinia virus fails to protect monkeys against dengue. J Gen Virol 69: 1921–1929

    PubMed  Google Scholar 

  • Dietzschold B, Wiktor TJ, Koprowski H (1985) Induction of virus neutralizing antibodies and protection against rabies using a vaccinia rabies glycoprotein recombinant. In: Quinnan GV (ed) Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York, pp 163–167

    Google Scholar 

  • Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330: 256–259

    PubMed  CAS  Google Scholar 

  • Drillien R, Spehner D, Kirn A Giraudon P, Buckland R, Wild F, Lecocq J-P (1988) Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proc Natl Acad Sci USA 85: 1252–1256

    PubMed  CAS  Google Scholar 

  • Earl PL, Moss B, Morrison RP, Wehrly K, Nishio J, Chesebro B (1986) T-lymphocyte priming and protection against Friend leukemia by vaccinia-retrovirus env gene recombinant. Science 234: 728–731

    PubMed  CAS  Google Scholar 

  • Effros R, Doherty PC, Gerhard W, Bennink J (1977) Generation of both cross-reactive and virus-specific T-cell populations after immunization with serologically distinct influenza A viruses. J Exp Med 145: 557–568

    PubMed  CAS  Google Scholar 

  • Eisenlohr LC, Hackett CJ (1989) Class II major histocompatibility complex-restricted T cells specific for a virion structural protein that do not recognize exogenous influenza virus. Evidence that presentation of labile T cell determination is favored by endogenous antigen synthesis. J Exp Med 169:921–931

    PubMed  CAS  Google Scholar 

  • Eisenlohr LC, Gerhard W, Hackett CJ, (1987) Role of receptor-binding activity of the viral hemagglutinin molecule in the presentation of influenza virus antigens to helper T cells. J Virol 61:1375–1383

    PubMed  CAS  Google Scholar 

  • Elango N, Prince GA, Murphy BR, Venkatesan S, Chanock RM, Moss B (1986) Resistance to human respiratory syncytial virus (RSV) infection induced by immunization of cotton rats with a recombinant vaccinia virus expressing the RSV G glycoprotein. Proc Natl Acad Sci USA 83: 1906–1910

    PubMed  CAS  Google Scholar 

  • Ennis FA (1982) Some newly recognized aspects of resistance against and recovery from influenza. Arch Virol 73: 207–215

    PubMed  CAS  Google Scholar 

  • Esposito J, Brechling K, Baer G, Moss B (1987) Vaccinia virus recombinants expressing rabies virus glycoprotein protect against rabies. Virus Genes 1: 7–21

    PubMed  CAS  Google Scholar 

  • Esposito JJ, Knight JC, Shaddock JH, Novembre FJ, Baer GM (1988) Successful oral rabies vaccination of raccoons with raccoon poxvirus recombinants expressing rabies virus glycoprotein. Virology 165: 313–316

    PubMed  CAS  Google Scholar 

  • Estin CD, Stevenson US, Plowman GD, Hu SL, Sridhar P, Hellstrom I, Brown JP, Hellstrom KE (1988) Recombinant vaccinia virus vaccine against the human melanoma antigen p97 for use in immunotherapy. Proc Natl Acad Sci USA 85: 1052–1056

    PubMed  CAS  Google Scholar 

  • Fisher-Hoch SP, McCormick JB, Auperin D, Brown BG, Castor M, Perez G, Ruo S, Conaty A, Brammer L, Bauer S (1989) Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc Natl Acad Sci USA 86: 317–321

    PubMed  CAS  Google Scholar 

  • Fischetti VA, Hodges WM, Hruby DE (1989) Protection against streptococcal pharyngeal colonization with a vaccinia: M protein recombinant. Science 244: 1487–1490

    PubMed  CAS  Google Scholar 

  • Fleisher B, Becht H, Rott R (1985) Recognition of viral antigens by human influenza A virus-specific T lymphocyte clones. J Immunol 135: 2800–2804

    Google Scholar 

  • Flexner C, Hugin A, Moss B (1987) Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 330: 259–262

    PubMed  CAS  Google Scholar 

  • Flexner C, Murphy BR, Rooney JF, Wohlenberg C, Yuferow V, Notkins, AL, Moss B (1988) Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen. Nature 335: 259–262

    PubMed  CAS  Google Scholar 

  • Gotch F, Rothbard J, Howland K, Townsend A, McMichael A (1987) Cytotoxic T lymphocytes recognized a fragment of influenza virus matrix protein in association with HLA-A2. Nature 326: 881–882

    PubMed  CAS  Google Scholar 

  • Gould KC, Cossins J, Bastin J, Brownlee GG, Townsend ARM (1989) A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 170: 1051–1056

    PubMed  CAS  Google Scholar 

  • Hanlon CA, Ziemer EL, Hamir AN, Rupprecht CE (1989) Cerebrospinal fluid analysis of rabid and vaccinia-rabies glycoprotein recombinant, orally vaccinated raccoons (Procyon lotor). Ann J Vet Res 50: 364–367

    CAS  Google Scholar 

  • Hany M, Oehen S, Schulz M, Hengartner H, Mackett M, Hishop DHL, Overton H, Zinkernagel RM (1989) Anti-viral protection and prevention of lymphocytic choriomeningitis or of the local footpad swelling reaction in mice by immunization with vaccinia-recombinant virus expressing LCMV-WE nucleoprotein or glycoprotein. Eur J Immunol 19: 417–424

    PubMed  CAS  Google Scholar 

  • Hedrick S, Germain RN, Bevan MJ Dorf M, Engel I, Fink P, Gascoigne N, Heber-Katz E, Kapp J, Kauffmann Y, Kaye J, Melchers F, Pierce C, Schwartz RH, Sorenson C, Taniguchi M, Davis MM (1985) Rearrangement and transcription of a T-cell receptor beta-chain gene in different T-cell subsets. Proc Natl Acad Sci USA 82: 531–535

    PubMed  CAS  Google Scholar 

  • Hioe CE, Hinshaw VS (1989) Induction and activity of class II-restricted, Lyt-2 + cytolytic T lymphocytes specific for the influenza H5 hemagglutinin. J Immunol 142: 2482–2488

    PubMed  CAS  Google Scholar 

  • Hu SL, Fultz PN, McClure HM, Eichberg JW, Thomas EK, Zarling J, Singhai MC, Kosowski SG, Swenson RB, Anderson DC, Todaro G (1987) Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature 328: 721–723

    PubMed  CAS  Google Scholar 

  • Hu SH, Plowman GD, Sridhar P, Stevenson US, Brown JP, Estin CD (1988) Characterization of a recombinant vaccinia virus expressing human melanoma-associated antigen p97. J Virol 62: 176–180

    PubMed  CAS  Google Scholar 

  • Jacobson S, Sekaly RP, Jacobson CL, McFarland HF, Long EO (1989) HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63: 1756–1762

    PubMed  CAS  Google Scholar 

  • Jakeman KJ, Smith H, Sweet C (1989) Mechanism of immunity to influenza: maternal and passive neonatal protection following immunization of adult ferrets with a live vaccinia-influenza virus haemagglutinin recombinant but not with recombinants containing other influenza virus proteins. J Gen Virol 70: 1523–1531

    PubMed  Google Scholar 

  • Jonjic S, del Val M, Keil GM, Reddehase MJ, Koszinowski UH (1988) A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. J Virol 62: 1653–1658

    PubMed  CAS  Google Scholar 

  • Kane KP, Vitiello A, Sherman LA, Mescher MF (1989) Cytolytic T-lymphocyte response to isolated class I H-2 proteins and influenza peptides. Nature 340: 157–159

    CAS  Google Scholar 

  • Kaplan DR, Griffith R, Braciale VL, Braciale TJ (1984) Influenza virus specific human cytotoxic T cell clones: heterogeneity in antigen specificity and restriction by class II products. Cell Immunol 188: 193–206

    Google Scholar 

  • Kees U, Krammer PH (1984) Most influenza A virus-specific memory cytotoxic T lymphocytes react with antigenic epitopes associated with internal virus determinants. J Exp Med 159: 365–377

    PubMed  CAS  Google Scholar 

  • Kieny MP, Lathe R, Drillien R, Spehner D, Skory S, Schmitt D, Wiktor T, Koprowski H, Lecocq JP (1984) Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 312: 163–166

    PubMed  CAS  Google Scholar 

  • Kieny MP, Blancou J, Lathe R, Pastoret PP, Soulebot JP, Desmettre P, Lelocq JP (1988) Development of animal recombinant DNA vaccine and its efficacy in foxes. Rev Infect Dis [Suppl 4] 10: S799–802

    Google Scholar 

  • King AM, Stott EJ, Langer SJ, Young KK, Ball LA, Wertz GW (1987) Recombinant vaccinia viruses carrying the N gene of human respiratory syncytial virus: studies of gene expression in cell culture and immune response in mice. J Virol 61: 2885–2890

    CAS  Google Scholar 

  • Kinney RM, Esposito JJ, Mathews JH, Johnson BJ, Roehrig JJ, Barrett ADT, Trent DW (1988) Recombinant vaccinia virus/Venezuelan equine encephalitis (VEE) virus protects mice from peripheral VEE virus challenge. J Virol 62: 4697–4702

    PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein JR, Raulet DH, Pasternack MS, Bevan MJ (1982) Cytotoxic T lymphocytes produce immune interferon in response to antigen or mitogen. J Exp Med 155: 1198-

    Google Scholar 

  • Koszinowski UH, Reddehase MJ, Keil GM, Volkmer H, Jonjic S, Messerle M, del Val M, Mutter W, Munch K, Buhler B (1987) Molecular analysis of herpesviral gene products recognized by protective cytotoxic T lymphocytes. Immunol Lett 16: 185–192

    PubMed  CAS  Google Scholar 

  • Kotwal GJ, Moss B (1989) Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J Virol 63: 600–606

    PubMed  CAS  Google Scholar 

  • Lamb RA (1989) Genes and proteins of the influenza viruses. In: Krug RM (ed) The Influenza Viruses. Plenum Press, New York, pp 1–87

    Google Scholar 

  • Lathe R, Kieny MP, Gerlinger P, Clertant P, Guizani I, Cuzin F, Chambon P (1987) Tumor prevention and rejection with recombinant vaccinia. Nature 326: 878–880

    CAS  Google Scholar 

  • Lukacher AE, Morrison LA, Braciale VL, Malissen B, Brachiale TJ (1985) Expression of specific cytolytic activity by H-2I region-restricted influenza virus specific T lymphocyte clones. J Exp Med 162: 171–187

    PubMed  CAS  Google Scholar 

  • Mackett M, and Smith GL (1986) Vaccinia virus expression vectors. J Gen Virol 67: 2067–2082

    PubMed  CAS  Google Scholar 

  • Mackett M, Smith GL, Moss B (1985a) The construction and characterization of vaccinia virus recombinants expressing foreign genes. In: Glover DM (ed) DNA cloning: a practical approach, vol II. IRL, Oxford, pp 191–211

    Google Scholar 

  • Mackett M, Yilma T, Rose JK, Moss B (1985b) Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science 227: 433–435

    PubMed  CAS  Google Scholar 

  • Marchioli CC, Yancey RJ Jr, Petrovskis EA, Timmins JG, Post LE (1987) Evaluation of Pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky’s disease in mice ans swine: expression by vaccinia virus and Chinese hamster ovary cells. J Virol 61: 3977–3982

    PubMed  CAS  Google Scholar 

  • Martin S, Rouse BT (1987) The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. J Immunol 138: 3431–3437

    PubMed  CAS  Google Scholar 

  • Martin S, Cantin E, Rouse BT (1988) Cytotoxic T lymphocytes. Their relevance in herpesvirus infections. Ann NY Acad Sci 532: 257–272

    PubMed  CAS  Google Scholar 

  • Martin S, Cantin E, Rouse BT (1989) Evaluation of antiviral immunity using vaccinia virus recombinants expressing cloned genes for herpes simplex virus type 1 glycoproteins. J Gen Virol 70: 1359–1570

    PubMed  CAS  Google Scholar 

  • Miller RA, Reiss CS (1984) Limiting dilution cultures reveal latent influenza virus-specific helper T cells in virus-primed mice. J Mol Cell Immunol 1: 357–368

    PubMed  CAS  Google Scholar 

  • Moll H, Elchmann K, Simon MM (1985) Immunoregulation by mouse T-cell clones. II. The same H-Y-specific clones can provide help for the generation of cytotoxic lymphocytes and antibody-secreting cells. Immunology 54: 255–264

    PubMed  CAS  Google Scholar 

  • Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54: 777–785

    PubMed  CAS  Google Scholar 

  • Morgan AJ, Mackett M, Finerty S, Arrand JR, Sculion FT, Epstein MA (1988) Recombinant vaccinia virus expressing Epstein-Barr virus glycoprotein gp340 protects cottontop tamarins against EB virus-induced malignant lymphomas. J Med Virol 25: 189–195

    PubMed  CAS  Google Scholar 

  • Morris AG, Lin YL and Askonas BA (1982) Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature 295: 150–152

    PubMed  CAS  Google Scholar 

  • Morrison LA, Lukacher AE, Braciale VL, Fan D, Braciale TJ (1986) Differences in antigen presentation of MHC class I and class II-restricted influenza A virus-specific cytolytic T lymphocyte clones. J Exp Med 163: 903–921

    PubMed  CAS  Google Scholar 

  • Morrison RP, Earl PL, Nishio J, Lodmell DL, Moss B, Chesebro B (1987) Different H-2 subregions influence immunization against retrovirus and immunosuppression. Nature 329: 729–732

    PubMed  CAS  Google Scholar 

  • Morrison HG, Bauer SP, Lange JV, Esposito JJ, McCormic JB, Auperin DD (1989) Protection of guinea pigs from Lassa fever by vaccinia virus recombinants expressing the nucleoprotein or the envelope glycoprotein of Lassa virus. Virology 171: 179–188

    PubMed  CAS  Google Scholar 

  • Moss B, Smith GL, Gerin JL, Purcell RH (1984) Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311: 67–69

    PubMed  CAS  Google Scholar 

  • Murphy BR, Olmsted RA, Collins PL, Chanock RM, Prince GA (1988) Passive transfer of respiratory syncytial virus (RSV) antiserum suppresses the immune response to the RSV fusion (F) and large (G) glycoprotein expressed by recombinant vaccinia viruses. J Virol 62: 3907–3910

    PubMed  CAS  Google Scholar 

  • Nuchtern JG, Bonifacino JS, Biddison WE, Klausner RD (1989) Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation. Nature 339: 223–226

    PubMed  CAS  Google Scholar 

  • Olmsted RA, Flango N, Prince GA, Murphy BR, Johnson PR, Moss B, Chanock R, Collins PL (1986) Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci USA 83: 7462–7466

    PubMed  CAS  Google Scholar 

  • Olmsted RA, Buller RM, Collins PL, London WT, Beeler JA, Prince GA, Chanock RM, Murphy BR (1988) Evaluation in non-human primates of the safety, immunogenicity and efficacy of recombinant vaccinia viruses expressing the F or G glycoprotein of respiratory syncytial virus. Vaccine 6: 519–524

    PubMed  CAS  Google Scholar 

  • Olmsted RA, Murphy BR, Lawrence LA, Elango N, Moss B, Collins PL (1989) Processing surface expression, and immunogenicity of carboxy-terminally truncated mutants of G protein of human respiratory syncytial Virol. J Virol 63: 411–420

    PubMed  CAS  Google Scholar 

  • Paabo S, Weber F, Kampe O, Schaffner W, Peterson PA (1983) Association between transplantation antigens and a viral membrane protein synthesized from a mammalian expression vector. Cell 35: 445–453

    Google Scholar 

  • Paabo S, Weber F, Nilsson T, Schaffner W, Peterson P (1986) Structural and functional dissection of a MHC class I antigen binding adenovirus glycoprotein. EMBO J 5: 1921–1927

    PubMed  CAS  Google Scholar 

  • Paabo S, Bhat BM, Wold WSM, Peterson PA (1987) A short sequence in the COOH- terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50: 311–317

    PubMed  CAS  Google Scholar 

  • Pala P, Askonas BA (1986) Low responder MHC alleles for Tc recognition of influenza nucleoprotein. Immunogenetics 23: 379–384

    PubMed  CAS  Google Scholar 

  • Pala P, Townsend ARM, Askonas BA (1986) Viral recognition by influenza A virus cross-reactive cytotoxic T (Tc) cells: the proportion of Tc cells that recognize nucleoprotein varies between individual mice. Eur J Immunol 16: 193–198

    PubMed  CAS  Google Scholar 

  • Paoletti E, Lipinskas BR, Samsonoff C, Mercer S, Panicali D (1984) Construction of live vaccines using genetically engineered poxviruses: biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc Natl Acad Sci USA 81: 193–197

    PubMed  CAS  Google Scholar 

  • Patterson RG, Lamb RA, Moss B, Murphy BR (1987) Comparison of the relative roles of the F and HN surface glycoproteins of the paramyxovirus simian virus 5 in inducing protective immunity. J Virol 61:1972–1977

    Google Scholar 

  • Paul WE (1984) Fundamental immunology. Raven, New York

    Google Scholar 

  • Piccini A, Paoletti E (1988) Vaccinia: virus, vector, vaccine. Adv Virus Res 34: 43–64

    PubMed  CAS  Google Scholar 

  • Pickup DJ, Ink BS, Hu W, Ray CA, Joklik WK (1986) Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proc Natl Acad Sci USA 81: 6817–6821

    Google Scholar 

  • Pierce RJ, Balloul JM, Grzych JM, Dissou C, Auriault C, Boulanger D, Capron M, Soundermeyer P, Lecocq JP, Capron A (1987) GP38, P28-I and P28-II candidates for a vaccine against schistosomia. Mem Inst Oswaldo Cruz 82 [Suppl 4]: 111–114

    PubMed  Google Scholar 

  • Ramshaw IA, Andrews ME, Phillips SM, Boyle DB, Coupar BEH (1987) Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature 329: 545–546

    PubMed  CAS  Google Scholar 

  • Rawle FC, Tollefson AE, Wold WSM, Gooding LR (1989) Mouse anti-adenovirus cytotoxic T lymphocytes: inhibition of lysis by E3 gp19 K but not E3 14.7 K. Immunol 143: 2031–2037

    CAS  Google Scholar 

  • Reay PA, Jones IM, Gotch FM, McMichael AJ, Brownlee GG (1989) Recognition of the PB1, neuraminidase, and matrix proteins of influenza virus A/NT/60/68 by cytotoxic T lymphocytes. Virol 170: 477–485

    CAS  Google Scholar 

  • Reiss CS, Burakoff SJ (1981) Specificity of the helper T cell for the cytolytic T lymphocyte response to influenza viruses. J Exp Med 154: 541–546

    PubMed  CAS  Google Scholar 

  • Rooney JF, Wohlenberg C, Cremer KJ, Moss B, Notkins AL (1988) Immunization with a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: long-term protection and effect of revaccination. J Virol 62: 1530–1534

    PubMed  CAS  Google Scholar 

  • Rota PA, Shaw MW, Kendal AP (1987) Comparison of the immune response to variant influenza type B hemagglutinins expressed in vaccinia virus. Virology 161: 269–275

    PubMed  CAS  Google Scholar 

  • Rota PA, Shaw MW, Kendal AP (1989) Cross-protection against microvariants of influenza virus type B by vaccinia viruses expressing haemagglutinins from egg- or MDCK cell-derived subpopulations of influenza virus type B/England/222/82. J Gen Virol 70: 1533–1537

    PubMed  Google Scholar 

  • Rupprecht CE, Wiktor TJ, Johnston DH, Hamir AN, Dietzschold B, Wunner WH, Glickman LT, Koprowski H (1986) Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc Natl Acad Sci USA 83: 7947–7950

    PubMed  CAS  Google Scholar 

  • Rupprecht CE, Hamir AN, Johnston DH, Koprowski H (1988) Efficacy of a vaccinia-rabies glycoprotein recombinant virus vaccine in raccoons (Procyon lotor). Rev Infect Dis 10: S803–809

    PubMed  Google Scholar 

  • Russell SM, Liew FY (1979) T cells primed by influenza virion internal components can cooperate in the antibody response to hemagglutinin. Nature 280: 147–148

    PubMed  CAS  Google Scholar 

  • Scherle PA, Gerhard WU (1986) Functional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutinin. J Exp Med 164: 1114–1129

    PubMed  CAS  Google Scholar 

  • Scherle PA, Gerhard WU (1988) Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc Natl Acad Sci USA 85: 4446–4450

    PubMed  CAS  Google Scholar 

  • Schwartz RH (1986) Immune response (Ir) genes of the murine major histocompatibility complex. Adv Immunol 38: 31–201

    PubMed  CAS  Google Scholar 

  • Shida H, Tochikura T, Sato T, Konno T, Hirayoshi K, Ito Y, Hatanaka M, Hinuma Y, Sugimoto M, Takahasi-Nishimaki F, Maruyama T, Miki K, Suzuki K, Morita M, Sashiyama H, Yoshimura N, Hayami M (1987) Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO J 6: 3379–3384

    PubMed  CAS  Google Scholar 

  • Signas C, Katze MG, Persson H, Philipson L (1982) An adenovirus glycoprotein binds heavy chains of class I transplantation antigens from man and mouse. Nature 299: 175–178

    PubMed  CAS  Google Scholar 

  • Small PA, Smith GL, Moss B (1985) Intranasal vaccination with recombinant vaccinia containing influenza hemagglutinin prevents both influenza virus pneumonia and nasal infection: intradermal vaccination prevents only viral pneumonia. In: Quinnan GV (ed) Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York, pp 175–177

    Google Scholar 

  • Smith GL, Murphy BR, Moss B (1983) Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci USA 80: 7155–7159

    PubMed  CAS  Google Scholar 

  • Smith GL, Levin JZ, Palese P, Moss B (1987) Synthesis and cellular location of the ten influenza polypeptides individually expressed by recombinant viruses. Virology 160: 336–345

    PubMed  CAS  Google Scholar 

  • Spriggs MK, Murphy BR, Prince GA, Olmsted RA, Collins PL (1987) Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity. J Virol 61: 3416–3423

    PubMed  CAS  Google Scholar 

  • Spriggs MK, Collins PL, Tierney E, London WT, Murphy BR (1988) Immunization with vaccinia virus recombinants that express the surface glycoproteins of humans parainfluenza virus type 3 (PIV3) protects patas monkeys against PIV3 infection. J Virol 62: 1293–1296

    PubMed  CAS  Google Scholar 

  • Scott EJ, Ball LA, Young KK, Furze J, Wertz GW (1986) Human respiratory syncytial virus glycoprotein G expressed from a recombinant vaccinia virus vector protects mice against live-virus challenge. J Virol 60: 607–613

    Google Scholar 

  • Stott EJ, Taylor G, Ball LA, Anderson K, Young KKY, King AMQ, Wertz GW (1987) Immune and histopathological responses in animals vaccinated with recombinant vaccinia viruses that express individual genes of human respiratory syncytial virus. J Virol 61: 3855–3861

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Tevethia SS (1988) Differential effect of adenovirus 2E3/19K glycoprotein on the expression of H-2Kb- and H-2Db-restricted SV40-specific CTL-mediated lysis. Virology 165: 357–366

    PubMed  CAS  Google Scholar 

  • Toison ND, Charlton KM, Stewart RB, Campbell JB, Wiktor TJ (1987) Immune response in skunks to a vaccinia virus recombinant expressing the rabies virus glycoprotein. Can J Vet Res 51: 363–366

    Google Scholar 

  • Toison ND, Charlton KM, Casey GA, Knowles MK, Rupprecht CE, Lawson KF, Campbell JB (1988) Immunization of foxes against rabies with a vaccinia recombinant virus expressing the rabies glycoprotein. Arch Virol 102: 297–301

    Google Scholar 

  • Townsend ARM, McMichael AJ, Carter NP, Haddleston JA, Brownlee GG (1984) Cytotoxic T cell recognition of the influenza virus nucleoprotein, hemagglutinin expressed in transfected mouse L cells. Cell 39: 13–25

    PubMed  CAS  Google Scholar 

  • Townsend ARM, Gotch FM, Davey J (1985) Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42: 457–467

    PubMed  CAS  Google Scholar 

  • Townsend A, Bastin J, Gould K, Brownlee G (1986a) Cytotoxic T lymphocytes recognize influenza hemagglutinin lacking a signal sequence. Nature 324: 575–577

    PubMed  CAS  Google Scholar 

  • Townsend ARM, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986b) The epitopes of influenza nucleoprotein recognized by cytotpxic T lymphocytes can be defined with short peptides. Cell 44: 959–968

    PubMed  CAS  Google Scholar 

  • Townsend A, Bastin J, Gould K, Brownlee G, Andrew M, Coupar B, Boyle D, Chan S, Smith G (1988) Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen J Exp Med 168: 1211–1224

    CAS  Google Scholar 

  • Townsend ARM, Ohlen C, Bastin J, Ljunggren H, Foster L, Karre K (1989) Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448

    PubMed  CAS  Google Scholar 

  • Van Eendenburg JP, Yagello M, Girard M, Kieny MP, Lelocq JP, Muchmore E, Fultz PN, Riviere Y, Montagnier L, Gluckman JC (1989) Cell-mediated immune proliferative responses to HIV-1 of chimpanzees vaccinated with different vaccinia recombinant viruses. AIDS Res Hum Retroviruses 5:41–50

    PubMed  Google Scholar 

  • Wachsman M, Aurelian L, Smith CC, Lipinskas BR, Perkus ME, Paoletti E (1987) Protection of guinea pigs form primary and recurrent herpes simplex virus (HSV) type 2 cutaneous disease with vaccinia virus recombinants expressing HSV glycoprotein D. J Infect Dis 155: 1188–1197

    PubMed  CAS  Google Scholar 

  • Wachsman M, Aurelian L, Hunter JC, Perkus ME, Paoletti E (1988) Expression of herpes simplex virus glycoprotein D on antigen presenting cells infected with vaccinia recombinants and protective immunity. Biosci Rep 8: 323–334

    PubMed  CAS  Google Scholar 

  • Wagner H, Starzinski-Powitz A, Jung H, Rollinghoff M (19877) Induction of I-region restricted hapten-specific cytotoxic T lymphocytes. J Immunol 119: 1365–1368

    Google Scholar 

  • Watts TH, Brian AA, Kappler J, Marrack P, McConnel HM, (1984;) Antigen presentation by supported planar membranes containing affinity-purified I-Ad. Proc Natl Acad Sci USA 81:7564–7568

    Google Scholar 

  • Webster RG, Reay PA, Laver WG (1988) Protection against lethal influenza with neuraminidase. Virology 164: 230–237

    PubMed  CAS  Google Scholar 

  • Weiss S, Bogen B (1989) B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc Natl Acad Sci USA 86: 282–286

    CAS  Google Scholar 

  • Wertz GW, Stott EJ, Young KK, Anderson K, Ball LA (1987) Expression of the fusion protein of human respiratory syncytial virus from recombinant vaccinia virus vectors and protection of vaccinated mice. J Virol 61: 293–301

    PubMed  CAS  Google Scholar 

  • Whitton JL, Oldstone MBA (1989) Class I MHC can present an endogenous peptide to cytotoxic T lymphocytes. J Exp Med 170: 1033–1038

    PubMed  CAS  Google Scholar 

  • Wiktor TJ, Macfarlan RI, Reagan KJ, Dietzschold B, Curtis P, Wunner WH, Kieny MP, Lathe R, Lecocq JP, Mackett M, Moss B, Koprowski H (1984) Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc Natl Acad Sci USA 81: 7194–7198

    PubMed  CAS  Google Scholar 

  • Willey DE, Cantin EM, Hill LR, Moss B, Notkins AL, Openshaw H (1988) Herpes simplex virus type 1-vaccinia virus recombinant expressing glycoprotein B: protection from acute and latent infection. J Infect Dis 158: 1382–1386

    PubMed  CAS  Google Scholar 

  • Wold WS, Cladaras C, Deutscher, SL, Kapoor QS (1985) The 19 kDa glycoprotein coded by region E3 of adenovirus. J Biol Chem 260: 2421–2431

    Google Scholar 

  • Wysocka M, Bennink JR (1988) Limiting dilution analysis of memory cytotoxic T lymphocyte specific for individual influenza virus gene products. Cell Immunol 112: 425–429

    PubMed  CAS  Google Scholar 

  • Wysocka M, Hackett CJ (1990) Class I H-2d-restricted cytotoxic T lymphocytes recognize the neuraminidase glycoprotein of influenza virus subtype NI. J Virol 64: 1028–1030

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1989) Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science 244: 1072–1075

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Hackett CJ (1989) The specificity and function of T lymphocytes induced by influenza A viruses. In: Krug R (ed) The influenza viruses, Plenum, New York.

    Google Scholar 

  • Yewdell JW, Bennink JR, Smith GL Moss B (1985) Influenza A virus nucleoprotein is a major target antigen for crossreactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82: 1785–1789

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR, Mackett M, Lefrancois L, Lyles DS, Moss B (1986) Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes. J Exp Med 163: 1529–1538

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR, Hosaka Y (1988) Cells process exogenous proteins for recognition by cytotoxic T lymphocytes. Science 239: 637–640

    PubMed  CAS  Google Scholar 

  • Yilma T, Hsu D, Jones L, Owens S, Grubman M, Mebus C, Yamanaka M, Dale B (1988) Protection of cattle against rinderpest with vaccinia virus recombinants expressing the HA or F gene. Science 242: 1058–1061

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells. Adv Immunol 27: 51–77

    PubMed  CAS  Google Scholar 

  • Zweerink HJ, Courtneidge SA, Skehel JJ, Crumpton MJ, Askonas BA (1977) Cytotoxic T cells kill influenza virus infected cells but do not distinguished between serologically distinct type A viruses. Nature 267: 354–356

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Bennink, J.R., Yewdell, J.W. (1990). Recombinant Vaccinia Viruses As Vectors for Studying T Lymphocyte Specificity and Function. In: Moyer, R.W., Turner, P.C. (eds) Poxviruses. Current Topics in Microbiology and Immunology, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75605-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75605-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75607-8

  • Online ISBN: 978-3-642-75605-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics