Skip to main content

The Role of Telomeres in Poxvirus DNA Replication

  • Conference paper
Poxviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 163))

Abstract

Poxviruses comprise a family of eukaryotic viruses which replicate exclusively in the cytoplasm of host vertebrate or invertebrate cells. The life cycle of this virus family (reviewed in Dales and Pogo 1982; Moss 1990) is initiated upon entry of the virions into the host cell. The core of the virion harbors not only the large double-stranded linear DNA genome, but also a great variety of polypeptides that are utilized during early viral transcription and for other events necessary to initiate the infective cycle. The multisubunit virus-encoded RNA polymerase, RNA capping enzyme, and poly(A) polymerase are amongst the enzymes that facilitate early gene expression in the virion core immediately upon entry into the host cell. Accurate early gene expression has also been induced in vitro. Following uncoating of the core, DNA replication takes place in specialized virus-induced structures which have been referred to as “factories”, “virosomes”, or “micro-nuclei”. Our current knowledge of the replication mechanism(s) utilized by this family of viruses is incomplete. Even though poxvirus genome structure is fairly well understood, replicative intermediate structures are ill-defined, as are the enzymes that mediate poxvirus DNA replication (reviewed in McFadden and Dales 1982; Holowczak 1982; Moss 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237: 409–411

    PubMed  CAS  Google Scholar 

  • Baroudy BM, Moss B (1982) Sequence homologies of diverse lengths tandem repetitions near the ends of vaccinia virus genome suggest unequal crossing over. Nucleic Acids Res 10: 5673–5679

    PubMed  CAS  Google Scholar 

  • Baroudy BM, Venkatesan S, Moss B (1982a) Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28: 315–324

    PubMed  CAS  Google Scholar 

  • Baroudy BM, Venkatesan S, Moss B (1982b) Structure and replication of vaccinia virus telomeres. Cold Spring Harbor Symp Quant Biol 47: 723–729

    CAS  Google Scholar 

  • Bateman AJ (1975) Simplification of palindromic telomere theory. Nature 253: 379–380

    PubMed  CAS  Google Scholar 

  • Bergold PJ, Campbell GR, Littau VC, Johnson EM (1983) Sequence and hairpin structure of an inverted repeat series at termini of the Physarum extrachromosomal rDNA molecule. Cell 32: 1287–1299

    PubMed  CAS  Google Scholar 

  • Berns KI, Silverman C (1970) Natural occurrence of cross-linked vaccinia virus deoxyribonucleic acid. J Virol 5: 299–304

    PubMed  CAS  Google Scholar 

  • Berns KI, Muzcyczka N, Hauswirth WW (1985) Replication of parvoviruses. In: Fields BN (ed) Virology. Raven, New York, pp 415–532

    Google Scholar 

  • Black DN, Hammond JM, Kitching RP (1986) Genomic relationship between capripoxviruses. Virus Res 5: 277–292

    PubMed  CAS  Google Scholar 

  • Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33–53

    PubMed  CAS  Google Scholar 

  • Blackburn EH, Szostak JW (1984) The molecular structure of centromeres and telomeres. Ann Rev Biochem 53: 163–194

    PubMed  CAS  Google Scholar 

  • Broker TR (1973) An electron microscopic analysis of pathways for bacteriophage T4 DNA recombination J Mol Biol 81: 1–16

    CAS  Google Scholar 

  • Buller RML, Chakrabarti S, Cooper JA, Twardzik DR, Moss B (1988) Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol 62: 866–874

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1974) Palindromic base sequences and replication of eukaryotic chromosomes. Nature 250: 467–470

    PubMed  CAS  Google Scholar 

  • Cech TR (1988) G-strings at chromosome ends. Nature 332: 777–778

    PubMed  CAS  Google Scholar 

  • Dales S, Pogo BGT (1982) The biology of poxviruses. Springer Berlin Heidelberg New York

    Google Scholar 

  • Dales S, Milanovitch V, Pogo BGT, Weintraub SB, Huima T, Wilton S, McFadden G (1978) Biogenesis of vaccinia: isolation of conditional lethal mutants and electron microscopic characterization of their phenotypically expressed defects. Virology 84: 403–428

    PubMed  CAS  Google Scholar 

  • DeFilippes FM (1976) Restriction enzyme digests of rapidly renaturing fragments of vaccinia virus DNA. J Virol 70: 227–238

    Google Scholar 

  • DeLange AM (1989) Identification of temperature-sensitive mutants of vaccinia virus that are defective in conversion of concatemeric replicative intermediates to the mature linear DNA genome. J Virol 63: 2437–2444

    PubMed  CAS  Google Scholar 

  • DeLange AM, McFadden G (1986) Sequence nonspecific replication of transfected plasmids in poxvirus-infected cells. Proc Natl Acad Sci USA 83: 614–618

    PubMed  CAS  Google Scholar 

  • DeLange AM, McFadden G (1987) Efficient resolution of replicated poxvirus telomeres to native hairpin structures requires two inverted symmetrical copies of a core target DNA sequence. J Virol 61: 1957–1963

    PubMed  CAS  Google Scholar 

  • DeLange AM, Futcher B, Morgan R, McFadden G (1984) Cloning of the vaccinia virus telomere in a yeast plasmid vector. Gene 27: 13–21

    PubMed  CAS  Google Scholar 

  • DeLange AM, Reddy M, Scraba D, Upton C, McFadden G (1986) Replication and resolution of cloned poxvirus telomeres in vivo generates linear minichromosomes with intact viral hairpin termini. J Virol 59: 249–259

    PubMed  CAS  Google Scholar 

  • deMassy B, Studier FW, Dorgai L, Appelbaum L, Weisberg RA (1984) Enzymes and sites of genetic recombination: studies with gene-3 endonuclease of phage T7 and with site-affinity mutants of phage lambda. Cold Spring Harbor Symp Quant Biol 49: 715–726

    CAS  Google Scholar 

  • Dickie P, Morgan AR, McFadden G (1987a) Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere. J Mol Biol 196:541–558

    PubMed  CAS  Google Scholar 

  • Dickie P, McFadden G, Morgan AR (1987b) The site-specific cleavage of synthetic Holliday junction analogs and related branched DNA structures by bacteriophage T7 endonuclease I. J Biol Chem 262: 14826–14836

    PubMed  CAS  Google Scholar 

  • Dickie P, Morgan AR, McFadden G (1988) Conformational association of the Holliday junction associated with a cruciform during branch migration in supercoiled plasmid DNA. J Mol Biol 201:19–30

    PubMed  CAS  Google Scholar 

  • Ellis THN, Day A (1986) A hairpin plastid genome in barley. EMBO J 5: 2769–2776

    PubMed  CAS  Google Scholar 

  • Emery HS, Weiner AM (1981) An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA in Dictyostelium discoideum. Cell 26: 411–419

    PubMed  CAS  Google Scholar 

  • Esposito JJ, Knight JC (1985) Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology 143: 230–251

    PubMed  CAS  Google Scholar 

  • Esteban M, Holowczak J (1977) Replication of vaccinia DNA in mouse L cells. I. in vivo DNA synthesis. Virology 78: 57–75

    PubMed  CAS  Google Scholar 

  • Esteban M, Flores L, Holowczak JA (1977) Model for vaccinia virus DNA replication. Virology 83:467–473

    PubMed  CAS  Google Scholar 

  • Evans DH, Stuart D, McFadden G (1988) High levels of genetic recombination among cotransfected plasmid DNAs in poxvirus-infected mammalian cells. J Virol 62: 367–375

    PubMed  CAS  Google Scholar 

  • Gafford LG, Mitchell EB, Randall CC (1978) A comparison of sedimentation behaviour of three poxvirus DNAs. Virology 89: 229–239

    PubMed  CAS  Google Scholar 

  • Geshelin P, Berns KI (1974) Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol 88: 785–796

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Talavera A, Almendral JM, Viñuela E (1986) Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res 14: 6835–6844

    PubMed  CAS  Google Scholar 

  • Graham FL, Van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467

    PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413

    PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–336

    PubMed  CAS  Google Scholar 

  • Hay RT, Russell WC (1989) Recognition mechanisms in the synthesis of animal virus DNA. Biochem J 258: 3–16

    PubMed  CAS  Google Scholar 

  • Holowczak JA (1982) Poxvirus DNA. Curr Top Microbiol Immunol 97: 27–79

    PubMed  CAS  Google Scholar 

  • Hooda-Dhingra U, Thompson CL, Condit RC (1989) Detailed phenotypic characterization of five temperature-sensitive mutants in the 22- and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. J Virol 63: 714–729

    PubMed  CAS  Google Scholar 

  • Jacquemont B, Grange J, Gazzolo L, Richard MH (1972) Composition and size of Shope fibroma virus deoxyribonucleic acid. J Virol 9: 836–841

    PubMed  CAS  Google Scholar 

  • Jaureguiberry G (1977) Cleavage of vaccinia virus DNA by restriction endonucleases BalI, EcoRI, BamHI. Isolation of the natural cross-links. FEBS Lett 83: 111–117

    PubMed  CAS  Google Scholar 

  • Johnson EM (1980) A family of inverted repeat sequences and specific single-strand gaps at the termini of the Physarum rDNA palindrome. Cell 22: 875–886

    PubMed  CAS  Google Scholar 

  • Jungwirth C, Dawid IB (1967) Vaccinia DNA: separation of viral from host cell DNA. Arch Virol 20: 464–468

    CAS  Google Scholar 

  • Kelly TJ, Wold MS, Li J (1988) Initiation of viral DNA replication. Adv Virus Res 34: 1–42

    PubMed  CAS  Google Scholar 

  • Kemper B, Jensch F, v Depka-Prondzynski M, Fritz HJ, Borgmeyer U, Mizuuchi K (1984) Resolution of Holliday structures by endonuclease VII as observed in interactions with cruciform DNA. Cold Spring Harbor Symp Quant Biol 49: 815–825

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hirai K, Gunge N, Hishinuma F (1985) Hairpin plasmid—a novel linear DNA of perfect hairpin structure. EMBO J 4: 1881–1886

    PubMed  CAS  Google Scholar 

  • Kilpatrick DR, Rouhandeh H (1985) Cloning and physical mapping of Yaba monkey tumor virus DNA. Virology 143: 399–406

    PubMed  CAS  Google Scholar 

  • Kilpatrick DR, Rouhandeh H (1987) The analysis of Yaba monkey tumor virus DNA. Virus Res 7:151–157

    PubMed  CAS  Google Scholar 

  • Kucherlapati R, Skoultchi AI (1984) Introduction of purified genes into mammalian cells. CRC Crit Rev Biochem 16: 349–379

    PubMed  CAS  Google Scholar 

  • Lakritz N, Foglesong PD, Reddy M, Baum S, Hurwitz J, Bauer WR (1985) A vaccinia virus DNase preparation which cross-links superhelical DNA. J Virol 53: 935–943

    PubMed  CAS  Google Scholar 

  • Lilley DM, Kemper B (1984) Cruciform-resolvase interactions in supercoiled DNA. Cell 36: 413–422

    PubMed  CAS  Google Scholar 

  • Macaulay C, Upton C, McFadden G (1987) Tumorigenic poxviruses: transcriptional mapping of the terminal inverted repeats of Shope fibroma virus. Virology 158: 381–393

    PubMed  CAS  Google Scholar 

  • McCarron RJ, Cabrera CV, Esteban M, McAllister W, Holowczak J (1978) Structure of vaccinia DNA: analysis of the viral genome by restriction endonucleases. Virology 86: 88–101

    PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282

    PubMed  CAS  Google Scholar 

  • McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA 28: 458–463

    PubMed  CAS  Google Scholar 

  • McFadden G, Dales S (1982) Organization and replication of poxvirus DNA. In: Kaplan AS (ed) Organization and replication of viral DNA. CRC, Boca Raton, pp 173–190

    Google Scholar 

  • McFadden G, Morgan AR (1982) DNA cruciform structures: implications for telomere replication in eukaryotes and instability of long palindromic DNA sequences in prokaryotes. J Theor Biol 97: 343–349

    PubMed  CAS  Google Scholar 

  • McFadden G, Stuart D, Upton C, Dickie P, Morgan AR (1988) Replication and resolution of poxvirus telomeres. In: Kelly T, Stillman B (eds) Cancer Cells 6: Eukaryotic DNA Replication. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 77–85

    Google Scholar 

  • Menna A, Wittek R, Bachmann PA, Mayr A, Wyler R (1979) Physical characterisation of a stomatitis populosa virus genome: a cleavage map for the restriction endonucleases HindIII and EcoRI. Arch Virol 59: 145–156

    PubMed  CAS  Google Scholar 

  • Mercer AA, Fraser K, Barns G, Robinson AJ (1987) The structure and cloning of orf virus DNA. Virology 157: 1–12

    PubMed  CAS  Google Scholar 

  • Merchlinsky M, Moss B (1986) Resolution of linear minichromosomes with hairpin ends from circular plasmids containing vaccinia virus concatemer junctions. Cell 45: 879–884

    PubMed  CAS  Google Scholar 

  • Merchlinsky M, Moss B (1988) Sequence-independent replication and sequence-specific resolution of plasmids containing the vaccinia virus concatemer junction: requirements for early and late transacting factors. In: Kelly T, Stillman B (eds) Cancer Cells 6: Eukaryotic DNA Replication. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 87–93

    Google Scholar 

  • Merchlinsky M, Garon CF, Moss B (1988) Molecular cloning and sequence of the concatemer junction from vaccinia virus replicative DNA. Viral nuclease cleavage sites in cruciform structures. J Mol Biol 199: 399–413

    PubMed  CAS  Google Scholar 

  • Merchlinsky M, Moss B (1989) Resolution of vaccinia virus DNA concatemer junctions requires lategene expression. J Virol 63: 1595–1603

    PubMed  CAS  Google Scholar 

  • Mizuuchi K, Kemper B, Hays J, Weisberg RA (1982) T4 endonuclease VII cleaves Holliday structures. Cell 29: 357–365

    PubMed  CAS  Google Scholar 

  • Morin GB, Cech TR (1986) The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell 46: 873–883

    PubMed  CAS  Google Scholar 

  • Morin GB, Cech TR (1988) Mitochondrial telomeres: surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell 52: 367–374

    PubMed  CAS  Google Scholar 

  • Moss B (1990) Replication of poxviruses. In: Fields BN (ed) Virology. 2nd Ed. Raven, New York, pp 2074–2111

    Google Scholar 

  • Moss B, Winters E, Cooper N (1981) Instability and reiteration of DNA sequences within the vaccinia virus genome. Proc Natl Acad Sci USA 78: 1614–1618

    PubMed  CAS  Google Scholar 

  • Moss B, Winters E, Jones EV (1983) Replication of vaccinia virus. In: Cozzarelli NR (ed) Mechanisms of DNA replication and recombination. Liss, New York, pp 449–461

    Google Scholar 

  • Moyer RW, Graves RL (1981) The mechanism of cytoplasmic orthopox replication. Cell 27: 391–401

    PubMed  CAS  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626

    PubMed  CAS  Google Scholar 

  • Niles EG, Seto J (1988) Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol 62: 3772–3778

    PubMed  CAS  Google Scholar 

  • Pacha RF, Condit RC (1985) Characterization of a temperature-sensitive mutant of vaccinia virus reveals a novel function that prevents virus-induced breakdown of RNA J. Virol 56: 395–403

    PubMed  CAS  Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289: 466–470

    PubMed  CAS  Google Scholar 

  • Parr RP, Burnett JW, Garon CF (1977) Structural characterization of the molluscum contagiosum virus genome. Virology 81: 247–256

    PubMed  CAS  Google Scholar 

  • Parsons BL, Pickup DJ (1987) Trandemly repeated sequences are present at the end of the DNA of raccoonpox virus. Virology 161: 45–53

    PubMed  CAS  Google Scholar 

  • Peden KWC, Pipas JM, Pearson-White S, Nathans D (1980) Isolation of mutants of an animal virus in bacteria. Science 209: 1392–1396

    PubMed  CAS  Google Scholar 

  • Pickup DJ, Bastia D, Stone HO, Joklik WK (1982) Sequence of terminal regions of cowpox virus DNA: arrangement of repeated and unique sequence elements. Proc Natl Acad Sci USA 79: 7112–7116

    PubMed  CAS  Google Scholar 

  • Pickup DJ, Bastia D, Joklik WK (1983) Cloning of the terminal loop of vaccinia virus DNA. Virology 124: 215–217

    PubMed  CAS  Google Scholar 

  • Pogo BGT (1977) Elimination of naturally occurring cross-links in vaccinia DNA after virus penetration. Proc Natl Acad Sci USA 74: 1739–1742

    PubMed  CAS  Google Scholar 

  • Pogo BGT (1980) Changes in parental vaccinia virus DNA after penetration into cells. Virology 101:520–524

    PubMed  CAS  Google Scholar 

  • Pogo BGT, O’Shea MT (1978) The mode of replication of vaccinia virus DNA. Virology 86: 1–8

    Google Scholar 

  • Pogo BGT, O’Shea M, Freimuth P (1981) Initiation and termination of vaccinia virus DNA replication. Virology 108: 241–248

    PubMed  CAS  Google Scholar 

  • Pogo BGT, Berkowitz EM, Dales S (1984) Investigation of vaccinia virus DNA replication employing a conditional lethal mutant defective in DNA. Virology 132: 436–444

    PubMed  CAS  Google Scholar 

  • Pritchard AE, Cummings DJ (1981) Replication of linear mitochondrial DNA from Paramecium: sequence and structure of the initiation-end crosslink. Proc Natl Acad Sci USA 78: 7341–7345

    PubMed  CAS  Google Scholar 

  • Reddy M (1988) Purification of the nicking-joining nuclease and its interaction with vaccinia viral replicative intermediates. Ph D thesis, Dept Microbiology, SUNY, Stony Brook, NY

    Google Scholar 

  • Reddy M, Bauer WR (1989) Activation of the vaccinia virus nicking-joining enzyme by trypsinization. J Biol Chem 264: 443–449

    PubMed  CAS  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136

    PubMed  CAS  Google Scholar 

  • Robinson AJ, Barns G, Fraser K, Carpenter E, Mercer AA (1987) Conservation and variation in orf virus genomes. Virology 157: 13–23

    PubMed  CAS  Google Scholar 

  • Seto J, Celenza LM, Condit R, Niles EG (1987) Genetic map of the vaccinia virus HindIII D fragment. Virology 160: 110–119

    PubMed  CAS  Google Scholar 

  • Szostak JW (1983) Replication and resolution of telomeres in yeast. Cold Spring Harbor Symp Quant Biol 47: 1187–1194

    PubMed  Google Scholar 

  • Szybalski WR, Erikson RL, Gentry LG, Gafford LG, Randall CC (1963) Unusual properties of fowlpox virus DNA. Virology 19: 586–589

    PubMed  CAS  Google Scholar 

  • Thomas V, Flores L, Holowczak JA (1980) Biochemical and electron microscopic studies of the replication and composition of Milker’s Node virus. J Virol 34: 244–255

    PubMed  CAS  Google Scholar 

  • Thompson CL, Condit RC (1986) Marker rescue mapping of vaccinia virus temperature-sensitive mutants using overlapping cosmid clones representing the entire virus genome. Virology 150: 10–20

    PubMed  CAS  Google Scholar 

  • Thompson CL, Hooda-Dhingra U, Condit RC (1989) Fine structure mapping of five temperature-sensitive mutants in the 22- and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. J Virol 63: 705–713

    PubMed  CAS  Google Scholar 

  • Upton C, DeLange AM, McFadden G (1987) Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. Virology 160: 20–30

    PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nature New Biol 239: 197–201

    PubMed  CAS  Google Scholar 

  • Weiner AM (1988) Eukaryotic nuclear telomeres: molecular fossils of the RNP world? Cell 52: 155–157

    PubMed  CAS  Google Scholar 

  • Wills A, DeLange AM, Gregson C, Macauley C, McFadden G (1983) Physical characterization and molecular cloning of the Shope fibroma virus genome. Virology 130: 403–414

    PubMed  CAS  Google Scholar 

  • Winters E, Baroudy BM, Moss B (1985) Molecular cloning of the terminal hairpin of vaccinia virus DNA as an imperfect palindrome in an Escherichia coli plasmid. Gene 37: 221–228

    PubMed  CAS  Google Scholar 

  • Wittek R, Moss B (1980) Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell 21: 277–284

    PubMed  CAS  Google Scholar 

  • Wittek R, Menna A, Schümperli D, Stoffel S, Müller HK, Wyler R (1977) HindIII and SstI restriction sites mapped on rabbit poxvirus and vaccinia virus DNA. J Virol 23: 669–678

    PubMed  CAS  Google Scholar 

  • Wittek R, Cooper JA, Barbosa E, Moss B (1980) Expression of the vaccinia virus genome: analysis and mapping of mRNAs encoded within the inverted terminal repetition. Cell 21: 487–493

    PubMed  CAS  Google Scholar 

  • Young BS, Pession A, Traverse KL, French C, Pardue ML (1983) Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 34: 85–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

DeLange, A.M., McFadden, G. (1990). The Role of Telomeres in Poxvirus DNA Replication. In: Moyer, R.W., Turner, P.C. (eds) Poxviruses. Current Topics in Microbiology and Immunology, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75605-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75605-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75607-8

  • Online ISBN: 978-3-642-75605-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics