Skip to main content

Poliovirus RNA Replication

  • Conference paper
Picornaviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 161))

Abstract

The biosynthesis of RNA directed by an RNA template is a reaction that is unique to RNA viruses. Although studies of polio virus RNA synthesis have been conducted in a somewhat intermittent fashion during the past 25 years in several different laboratories, no clear picture has yet emerged regarding the biochemistry of RNA replication for this or any other RNA virus. Upon entry into the cell, the positive strand, infecting RNA genome directs the synthesis of viral proteins which are required for replication of the RNA. The replication process involves first the synthesis of a negative strand RNA molecule; subsequent transcription of this negative strand produces new copies of the positive strand RNA. Historically, the experimental approach initially utilized to analyze the poliovirus RNA replication reaction was enzymological; efforts were made to isolate and purify an RNA-dependent RNA polymerase activity from virus-infected cells. Indeed, at that time, the only tools available for RNA replication studies were biochemical. The biochemistry, however, proved difficult. RNA replication was found to occur in intracellular structures that are tightly associated with or in membranes, and these proved intractable to purification and dissection. Disruption of the membrane structure in order to isolate template or enzyme components often appeared to alter their properties and/or structures. Thus, the initial approach yielded little information about the mechanism of RNA replication, and it has been only quite recently that alternative approaches have been applied.

Work on poliovirus RNA replication in the authors’ laboratories was supported by a grant from the US Public Health Service (AI 17386)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agut H, Kean KM, Fichot O, Morasco J, Flanegan JB, Girard M (1989) A point mutation in the poliovirus polymerase gene determines a complementable temperature-sensitive defect of RNA replication. Virology 168: 302–311

    PubMed  CAS  Google Scholar 

  • Alexander HE, Koch G, Mountain IM, Van Damme O (1958) Infectivity of ribonucleic acid from poliovirus in human cell monolayers. J Exp Med 108: 493–506

    PubMed  CAS  Google Scholar 

  • Ambros V, Baltimore D (1978) Protein is linked to the 5’ end of poliovirus RNA by phosphodiester linkage to tyrosine. J Biol Chem 253: 5263–5266

    PubMed  CAS  Google Scholar 

  • Anderson-Sillman K, Bartal S, Tershak DR (1984) Guanidine-resistant poliovirus mutants produce modified 37-kilodalton proteins. J Virol 50: 922–928

    PubMed  CAS  Google Scholar 

  • Andrews NC, Baltimore D (1986) Purification of a terminal uridylyl transferase that acts as host factor in the in vitro poliovirus replicase reaction. Proc Natl Acad Sci USA 83: 221–225

    PubMed  CAS  Google Scholar 

  • Andrews NC, Levin D, Baltimore D (1985) Poliovirus replicase stimulation by terminal uridylyl transferase. J Biol Chem 260: 7628–7635

    PubMed  CAS  Google Scholar 

  • Baltimore D (1964) In vitro synthesis of viral RNA by the poliovirus RNA polymerase. Proc Natl Acad Sci USA 51: 450–456

    PubMed  CAS  Google Scholar 

  • Baltimore D (1966) Purification and properties of poliovirus double-stranded ribonucleic acid. J Mol Biol 18: 421–428

    PubMed  CAS  Google Scholar 

  • Baltimore D (1968) Inhibition of poliovirus replication by guanidine. In: Sanders M, Lennette EH (eds) Medical and applied virology.Green, St Louis, pp 340–347

    Google Scholar 

  • Baltimore D, Girard M (1966) An intermediate in the synthesis of poliovirus RNA. Proc Natl Acad Sci USA 56: 741–748

    PubMed  CAS  Google Scholar 

  • Baltimore D, Franklin RM, Eggers HJ, Tamm I (1963) Poliovirus induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proc Natl Acad Sci USA 49: 843–849

    PubMed  CAS  Google Scholar 

  • Baltimore D, Girard M, Darnell JE (1966) Aspects of the synthesis of poliovirus RNA and the formation of virus particles. Virology 29: 179–189

    PubMed  CAS  Google Scholar 

  • Baron MH, Baltimore D (1982a) Antibodies against the chemically synthesized genome-linked protein of poliovirus react with native virus-specific proteins. Cell 28: 395–404

    PubMed  CAS  Google Scholar 

  • Baron MH, Baltimore D (1982b) Anti-VPg antibody inhibition of the poliovirus replication reaction and production of covalent complexes of VPg-related proteins and RNA. Cell 30: 745–752

    PubMed  CAS  Google Scholar 

  • Baron MH, Baltimore D (1982c) Purification and properties of a host cell protein required for poliovirus replication in vitro. J Biol Chem 257: 12351–12358

    PubMed  CAS  Google Scholar 

  • Baron M H, Baltimore D (1982d) In vitro copying of viral positive strand RNA by poliovirus replicase. Characterization of the reaction and its products. J Biol Chem 257: 12359–12366

    Google Scholar 

  • Bellocq C, Agut H, Van Der Werf S, Girard M (1984) Biochemical characterization of poliovirus type 1 temperature-sensitive mutants. Virology 139: 403–407

    PubMed  CAS  Google Scholar 

  • Bernstein HD, Baltimore D (1988) Poliovirus mutant that contains a cold-sensitive defect in viral RNA synthesis. J Virol 62: 2922–2928

    CAS  Google Scholar 

  • Bernstein HD, Sarnow P, Baltimore D (1986) Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. J Virol 60: 1040–1049

    PubMed  CAS  Google Scholar 

  • Bienz K, Egger D, Rasser Y, Bossart W (1983) Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131: 39–48

    PubMed  CAS  Google Scholar 

  • Bienz K, Egger D, Pasamontes L (1987) Association of polio viral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunochemistry and autoradiography. Virology 160: 220–226

    PubMed  CAS  Google Scholar 

  • Bishop JM, Koch G (1967) Purification and characterization of poliovirus induced infectious double-stranded RNA. J Biol Chem 242: 1736–1743

    PubMed  CAS  Google Scholar 

  • Bishop JM, Koch G (1969) Infectious replicative intermediate of poliovirus: purification and characterization. Virology 37: 521–534

    PubMed  CAS  Google Scholar 

  • Bishop JM, Koch G, Evans B, Merriman M (1969) Poliovirus replicative intermediate: structural basis of infectivity. J Mol Biol 46: 235–249

    PubMed  CAS  Google Scholar 

  • Bowles SA, Tershak DR (1978) Proteolysis of non-capsid protein 2 of type 3 poliovirus at the restrictive temperature: breakdown of non-capsid protein 2 correlates with loss of RNA synthesis. J Virol 27: 443–448

    PubMed  CAS  Google Scholar 

  • Burns CC, Lawson MA, Semler BL, Ehrenfeld E (1989) Effects of mutations in poliovirus 3Dpol on RNA polymerase activity and on polyprotein cleavage. J Virol 63: 4866–4874

    PubMed  CAS  Google Scholar 

  • Caliguiri LA (1974) Analysis of RNA associated with the poliovirus RNA replication complexes. Virology 58: 526–535

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Compans RW (1973) The formation of poliovirus particles in association with the RNA replication complexes. J Gen Virol 21: 99–108

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Mosser AG (1971) Proteins associated with the poliovirus RNA replication complex. Virology 46: 375–386

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1969) Membranous structures associated with translation and transcription of poliovirus RNA. Science 166: 885–886

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1970a) The role of cytoplasmic membranes in poliovirus biosynthesis. Virology 42: 100–110

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1970b) Characterization of poliovirus-specific structures associated with cytoplasmic membranes. Virology 42: 112–122

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1973) Guanidine and 2-(a-hydroxybenzyl) benzimidazole (HBB): selective inhibitors of picornavirus multiplication. In: Carter W (ed) Selective inhibitors of viral function. CRC, Cleveland, pp 257–294

    Google Scholar 

  • Cole CN, Smoler D, Wimmer E, Baltimore D (1971) Defective interfering particles of poliovirus I. Isolation and physical properties. J Virol 7: 478–485

    Google Scholar 

  • Cooper PD (1977) Genetics of picornaviruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology, vol 9. Plenum, New York, pp 133–207

    Google Scholar 

  • Crawford NM, Baltimore D (1983) Genome-linked protein VPg of polio virus is present as free VPg and VPgpUpU in poliovirus-infected cells. Proc Natl Acad Sci USA 80: 7452–7455

    PubMed  CAS  Google Scholar 

  • Crocker TT, Pfendt E, Spendlove R (1964) Poliovirus: growth in non-nucleate cytoplasm. Science 145: 401–403

    PubMed  CAS  Google Scholar 

  • Darnell JE, Levintow L, Thoren MM, Hooper JL (1961) The time course of synthesis of poliovirus RNA. Virology 13: 271–279

    PubMed  CAS  Google Scholar 

  • Darnell JE, Girard M, Baltimore D, Summers DF, Maizel JV (1967) The synthesis and translation of poliovirus RNA. In: Colter JS, Paranchych W (eds) The molecular biology of viruses. Academic, New York, pp 375–401

    Google Scholar 

  • Dasgupta A (1983a) Purification of host factor required for in vitro transcription of poliovirus RNA. Virology 127: 245–251

    Google Scholar 

  • Dasgupta A (1983b) Antibody to host factor precipitates poliovirus RNA polymerase from poliovirus-infected HeLa cells. Virology 128: 252–259

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Baron MH, Baltimore D (1979) Poliovirus replicase: a soluble enzyme able to initiate copying of poliovirus RNA. Proc Natl Acad Sci USA 76: 2679–2683

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Zabel P, Baltimore D (1980) Dependence of the activity of the poliovirus replicase on a host cell protein. Cell 19: 423–429

    PubMed  CAS  Google Scholar 

  • Dewalt PG, Semler BL (1987) Site-directed mutagenesis of proteinase 3C results in a poliovirus deficient in synthesis of viral RNA polymerase. J Virol 61: 2162–2170

    PubMed  CAS  Google Scholar 

  • Dildine SL, Semler BL (1989) The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive region in the 5’ noncoding region of genomic RNA. J Virol 63: 847–862

    PubMed  CAS  Google Scholar 

  • Ehrenfeld E, Richards OC (1989) Studies of poliovirus RNA polymerase expressed in E. coli: attempts to understand virus RNA replication. In: Semler BL, Ehrenfeld E (eds) Molecular aspects of Picornavirus infection and detection. Amer. Society of Microbiology, Washington DC, pp 95–105

    Google Scholar 

  • Ehrenfeld E, Maizel JV, Summers DF (1970) Soluble RNA polymerase complex from poliovirus-infected HeLa cells. Virology 40: 840–846

    PubMed  CAS  Google Scholar 

  • Emini EA, Leibowitz J, Diamond DC, Bonin J, Wimmer E (1984) Recombinants of Mahoney and Sabin strain poliovirus type 1: analysis of in vitro phenotypic markers and evidence that resistance to guanidine maps in the non-structural proteins. Virology 137: 74–85

    PubMed  CAS  Google Scholar 

  • Etchison D, Ehrenfeld E (1980) Viral polypeptides associated with the RNA replication complex in poliovirus-infected cells. Virology 107: 135–142

    PubMed  CAS  Google Scholar 

  • Etchison D, Ehrenfeld E (1981) Comparison of replication complexes synthesizing poliovirus RNA. Virology 111: 33–46

    PubMed  CAS  Google Scholar 

  • Fernandez-Munoz R, Darnell JE (1976) Structural difference between the 5’ termini of viral and cellular mRNA in the poliovirus-infected cells: possible basis for the inhibition of host protein synthesis. J Virol 18: 719–726

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Baltimore D (1977) Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). Proc Natl Acad Sci USA 74: 3677–3680

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Baltimore D (1979) Poliovirus polyuridylic acid polymerase and RNA replicase have the same viral polypeptide. J Virol 29: 352–360

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Van Dyke TA (1979) Isolation of a soluble and template-dependent poliovirus RNA polymerase that copies virion RNA in vitro. J Virol 32: 155–161

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Pettersson RF, Ambros V, Hewlett MJ, Baltimore D (1977) Covalent linkage of a protein to a defined nucleotide sequence at the 5’ terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci USA 74: 961–965

    PubMed  CAS  Google Scholar 

  • Franklin RM, Baltimore D (1962) Patterns of macromolecular synthesis in normal and virus-infected mammalian cells. Cold Spring Harb Symp Quant Biol 27: 175–198

    PubMed  CAS  Google Scholar 

  • Giachetti C, Semler BL (1989) In: 2nd International symposium on positive strand RNA viruses, Vienna.

    Google Scholar 

  • Girard M (1969) In vitro synthesis of poliovirus ribonucleic acid: role of the replicative intermediate. J Virol 3: 376–384

    PubMed  CAS  Google Scholar 

  • Girard M, Baltimore D, Darnell JE (1967) The poliovirus replication complex: site for synthesis of poliovirus RNA. J Mol Biol 24: 59–74

    CAS  Google Scholar 

  • Hagino-Yamagishi K, Nomoto A (1990) In vitro construction of poliovirus defective-interfering particles. J Virol 63: 5386–5392

    Google Scholar 

  • Hewlett MJ, Rose JK, Baltimore D (1976) 5’-Terminal structure of poliovirus polyribosomal RNA is pUp. Proc Natl Acad Sci USA 73: 327–330

    Google Scholar 

  • Hewlett MJ, Axelrod JH, Antinoro N, Feld R (1982) Isolation and preliminary characterization of temperature-sensitive mutants of poliovirus type 1. J Virol 41: 1089–1094

    PubMed  CAS  Google Scholar 

  • Hey TD, Richards OC, Ehrenfeld E (1986) Synthesis of plus- and minus-strand RNA from poliovirion RNA template in vitro. J Virol 58: 790–796

    PubMed  CAS  Google Scholar 

  • Hey TD, Richards OC, Ehrenfeld E (1987) Host factor-induced template modification during synthesis of poliovirus RNA in vitro. J Virol 61: 802–811

    PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren LC, Syverton JT (1959) The mammalian cell-virus relationship. IV. Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J Exp Med 110: 65–80

    Google Scholar 

  • Jore J, Gens BD, Jackson RD, Pouwels PH, Enger-Valk B (1988) Poliovirus protein 3CD is the active protease for processing of the precursor protein PI in vitro. J Gen Virol 69: 1627–1636

    PubMed  CAS  Google Scholar 

  • Kajigaya S, Arakawa H, Kuge S, Koi T, Imura N, Nomoto A (1985) Isolation and characterization of defective-interfering particles of poliovirus Sabin I strain. Virology 142: 307–316

    PubMed  CAS  Google Scholar 

  • Kamer G, Argos P(1984) Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12: 7269–7282

    Google Scholar 

  • Kaplan G, Racaniello VR (1988) Construction and characterization of poliovirus subgenomic replicons. J Virol 62: 1687–1696

    PubMed  CAS  Google Scholar 

  • Kaplan G, Lubinski J, Dasgupta A, Racaniello VR (1985) In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci USA 82: 8424–8428

    PubMed  CAS  Google Scholar 

  • Kean KM, Agut H, Fichot O, Wimmer E, Girard M (1988) A poliovirus mutant defective for self- cleavage at the COOH-terminus of the 3C protease exhibits secondary processing defects. Virology 163: 330–340

    PubMed  CAS  Google Scholar 

  • Kean KM, Agut H, Fichot O, Girard M (1989) Substitution in the poliovirus replicase genes determines actinomycin D sensitivity of viral replication at elevated temperature. Virus Res 12: 19–32

    PubMed  CAS  Google Scholar 

  • Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini EA, Hanecak R, Lee J J, Van Der Werf S, Anderson CW, Wimmer E (1981) Primary structure, gene organization, polypeptide expression of poliovirus RNA. Nature 291: 547–553

    PubMed  CAS  Google Scholar 

  • Korant BD (1975) Regulation of animal virus replication by protein cleavage. In: Reich E, Rifkin BD, Shaw E (eds) Proteases and biological control. Cold Spring Harbor Laboratory, Cold Spring Harbor pp 621–635

    Google Scholar 

  • Kuge S, Saito L, Nomoto A (1986) Primary structure of poliovirus defective interfering particle genomes and possible generation mechanism of the particles. J Mol Biol 192: 473–487

    PubMed  CAS  Google Scholar 

  • Kuhn RJ, Tada H, Ypma-Wong MF, Semler BL, Wimmer E (1988) Mutational analysis of the genome-linked protein VPg of poliovirus. J Virol 62: 4207–4215

    PubMed  CAS  Google Scholar 

  • La Monica N, Meriam C, Racaniello VR (1986) Mapping of sequences required for mouse neuro virulence of poliovirus type 2 Lansing. J Virol 57: 515–525

    PubMed  Google Scholar 

  • Larsen GR, Dorner AJ, Harris TJR, Wimmer E (1980) The structure of poliovirus replicative form. Nucleic Acids Res 8: 1217–1229

    PubMed  CAS  Google Scholar 

  • Lee YF, Nomoto A, Detjen BM, Wimmer E (1977) The genome-linked protein of picornaviruses 1. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci USA 74: 59–63

    Google Scholar 

  • Li J-P, Baltimore D (1988) Isolation of poliovirus 2C mutants defective in viral RNA synthesis. J Virol 62: 4016–4021

    PubMed  CAS  Google Scholar 

  • Lubinski JM, Kaplan G, Racaniello VR, Dasgupta A (1986) Mechanism of in vitro synthesis of covalently linked dimeric RNA molecules by the poliovirus replicase. J Virol 58: 459–467

    PubMed  CAS  Google Scholar 

  • Lubinski JM, Ransone LJ, Dasgupta A (1987) Primer-dependent synthesis of covalently linked dimeric RNA molecules by poliovirus replicase. J Virol 61: 2997–3003

    PubMed  CAS  Google Scholar 

  • Lundquist RE, Maizel JV (1978a) Structural studies of the RNA component of the poliovirus replication complex I. Purification and biochemical characterization. Virology 85: 434–444

    Google Scholar 

  • Lundquist RE, Maizel JV (1978b) In vivo regulation of the poliovirus RNA polymerase. Virology 89: 484–493

    PubMed  CAS  Google Scholar 

  • Lundquist RE, Ehrenfeld E, Maizel JV (1974) Isolation of a viral polypeptide associated with poliovirus RNA polymerase. Proc Natl Acad Sci USA 71: 4773–4777

    PubMed  CAS  Google Scholar 

  • Lundquist RE, Sullivan M, Maizel JV (1979) Characterization of a new isolate of poliovirus defective interfering particles. Cell 18: 759–769

    PubMed  CAS  Google Scholar 

  • McDonnell JP, Levintow L (1970) Kinetics of appearance of the products of polio virus-induced RNA polymerase. Virology 42: 999–1006

    PubMed  CAS  Google Scholar 

  • Meyer J, Lundquist RE, Maizel JV (1978) Structural studies of the RNA component of the poliovirus replication complex. Virology 85: 445–455

    PubMed  CAS  Google Scholar 

  • Montagnier L, Sanders FK (1963) Sedimentation properties of infective ribonucleic acid extracted from encephalomyocarditis virus. Nature 197: 664–669

    Google Scholar 

  • Morrow CD, Navab M, Peterson C, Hocko J, Dasgupta A (1984) Antibody to poliovirus genome- linked protein ( VPg) precipitates in vitro synthesized RNA attached to VPg-precursor polypeptide(s ). Virus Res 1: 89–100

    Google Scholar 

  • Morrow CD, Gibbons GF, Dasgupta A (1985) The host protein required for in vitro replication of poliovirus is a protein kinase that phosphorylates eukaryotic initiation factor-2. Cell 40: 913–921

    PubMed  CAS  Google Scholar 

  • Morrow CD, Warren B, Lentz MR (1987) Expression of enzymatically active poliovirus RNA-dependent RNA polymerase in Escherichia coli. Proc Natl Acad Sci USA 84: 6050–6054

    PubMed  CAS  Google Scholar 

  • Mosser AG, Caliguiri LA, Scheid AS (1972) Chemical and enzymatic characteristics of cytoplasmic membranes of polio virus-infected HeLa cells. Virology 47: 30–38

    PubMed  CAS  Google Scholar 

  • Noble J, Levintow L (1970) Dynamics of polio virus-specific RNA synthesis and the effects of inhibitors of virus replication. Virology 40: 634–642

    PubMed  CAS  Google Scholar 

  • Nomoto A, Lee YF, Wimmer E (1976) The 5’-end of poliovirus mRNA is not capped with m7G(5’) ppp(5’)Np. Proc Natl Acad Sci USA 73: 375–380

    PubMed  CAS  Google Scholar 

  • Nomoto A, Kitamura N, Golini F, Wimmer E (1977a) The 5’-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci USA 74: 5345–5349

    PubMed  CAS  Google Scholar 

  • Nomoto A, Detjen B, Pozzatti R, Wimmer E (1977b) The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268: 208–213

    PubMed  CAS  Google Scholar 

  • Nomoto A, Jacobsen A, Lee YF, Dunn J, Wimmer E (1979) Defective interfering particles of poliovirus:mapping of deletion and evidence that the deletion in genome of Dl (1), (2) and (3) are located in the same region. J Mol Biol 128: 179–196

    PubMed  CAS  Google Scholar 

  • Nomoto A, Omata T, Toyoda H, Kuge S, Horie H, Kataoka Y, Genba Y, Nakano Y, Imura N (1982) Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc Natl Acad Sci USA 79: 5793–5797

    PubMed  CAS  Google Scholar 

  • Oberste MS, Flanegan JB (1988) Measurement of poliovirus RNA polymerase binding to poliovirion and nonviral RNAs using a filter-binding assay. Nucleic Acids Res 16: 10339–10352

    PubMed  CAS  Google Scholar 

  • Okada Y, Toda G, Oka H, Nomoto A, Yoshikura H (1987) Poliovirus infection of established human blood cell lines. Relationship between the differentiation stage and susceptibility or cell killing. Virology 156: 238–245

    Google Scholar 

  • Penman S, Becker Y, Darnell JE (1964) A cytoplasmic structure involved in the synthesis and assembly of poliovirus components. J Mol Biol 8: 541–555

    PubMed  CAS  Google Scholar 

  • Pettersson RF, Ambros V, Baltimore D (1978) Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol 27: 357–365

    PubMed  CAS  Google Scholar 

  • Pincus SE, Diamond DC, Emini EA, Wimmer E (1986) Guanidine-selected mutants of poliovirus: mapping of point mutations of polypeptide 2C. J Virol 57: 638–646

    PubMed  CAS  Google Scholar 

  • Plotch SJ, Palant O, Gluzman Y (1989) Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli. J Virol 63: 216–225

    PubMed  CAS  Google Scholar 

  • Racaniello VR, Baltimore D (1981) Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci USA 78: 4887–4891

    PubMed  CAS  Google Scholar 

  • Racaniello V, Meriam C (1986) Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5’ non-coding region of the viral RNA. Virology 155: 498–507

    PubMed  CAS  Google Scholar 

  • Ransone LJ, Dasgupta A (1989) Multiple isoelectric forms of poliovirus RNA-dependent RNA polymerase: evidence for phosphorylation. J Virol 63: 4563–4568

    PubMed  CAS  Google Scholar 

  • Richards OC, Ehrenfeld E (1980) Heterogeneity of the 3’ end of minus strand RNA in poliovirus replicative form. J Virol 36: 387–394

    PubMed  CAS  Google Scholar 

  • Richards OC, Ehrenfeld E, Manning J (1979) Strand-specific attachment of avidin spheres to double-stranded poliovirus RNA. Proc Natl Acad Sci USA 76: 676–680

    PubMed  CAS  Google Scholar 

  • Richards OC, Martin SC, Jense HG, Ehrenfeld E (1984) Structure of poliovirus replicative intermediate RNA. Electron microscope analysis of RNA cross-linked in vivo with psoralen derivative. J Mol Biol 173: 325–340

    Google Scholar 

  • Richards OC, Hey TD, Ehrenfeld E (1987a) Poliovirus snapback double-stranded RNA isolated from infected HeLa cells is deficient in poly(A). J Virol 61: 2307–2310

    PubMed  CAS  Google Scholar 

  • Richards OC, Ivanoff LA, Bienkowska-Szewczyk K, Butt B, Petteway SR, Rothstein MA, Ehrenfeld E (1987b) Formation of poliovirus RNA polymerase 3D in Escherichia coli by cleavage of fusion proteins expressed from cloned viral cDNA. Virology 161: 348–356

    PubMed  CAS  Google Scholar 

  • Röder A, Koschel A (1975) Virus-specific proteins associated with the replication complex of poliovirus RNA. J Gen Virol 14: 846–852

    Google Scholar 

  • Roivainen M, Hovi T (1989) Replication of poliovirus in human mononuclear phagocyte cell lines is dependent on the stage of cell differentiation. J Med Virol 27: 91–94

    PubMed  CAS  Google Scholar 

  • Rothberg PG, Harris TJR, Nomoto A, Wimmer E (1978) The genome-linked protein of picorna viruses. V.04-(5’-Uridylyl)-tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc Natl Acad Sci USA 75: 4868–4872

    PubMed  CAS  Google Scholar 

  • Rothstein MA, Richards OC, Amin C, Ehrenfeld E (1988) Enzymatic activity of poliovirus RNA polymerase synthesized in Escherichia coli from viral cDNA. Virology 164: 301–308

    PubMed  CAS  Google Scholar 

  • Roy P, Bishop DHL (1970) Isolation and properties of poliovirus minus strand-ribonucleic acid. J Virol 6: 604–609

    PubMed  CAS  Google Scholar 

  • Rueckert RR, Wimmer E (1984) Systematic nomenclature of Picornavirus proteins. J Virol 50: 957–959

    PubMed  CAS  Google Scholar 

  • Sarnow P (1989) Role of 3’-end sequences in infectivity of poliovirus transcripts made in vitro. J Virol 63: 467–470

    PubMed  CAS  Google Scholar 

  • Sarnow P, Bernstein HS, Baltimore D (1986) A poliovirus temperature-sensitive mutant located in a non-coding region of the genome. Proc Natl Acad Sci USA 83: 571–575

    PubMed  CAS  Google Scholar 

  • Savage T, Granboulan N, Girard M (1971) Architecture of the poliovirus replicative intermediate RNA Biochimie 53: 533–543

    CAS  Google Scholar 

  • Scharff MD, Thoren MM, McElvain NF, Levintow L (1963) Interruption of poliovirus RNA synthesis by p-fluorophenylalanine and puromycin. Biochem Biophys Res Commun 10: 127–132

    CAS  Google Scholar 

  • Semler BL, Anderson CW, Hanecak R, Dorner LF, Wimmer E (1982) A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 28: 405–412

    PubMed  CAS  Google Scholar 

  • Semler BL, Hanecak R, Dorner LF, Anderson CW, Wimmer E (1983) Poliovirus RNA synthesis in vitro: Structural elements and antibody inhibition. Virology 126: 624–633

    Google Scholar 

  • Semler BL, Johnson VH, Tracy S (1986) A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive. Proc Natl Acad Sci USA 83: 1777–1781

    PubMed  CAS  Google Scholar 

  • Skern T, Sommergruber W, Blaas D, Pieler C, Kuechler E (1984) Relationship of human rhino virus strain 2 and poliovirus as indicated by comparison of the polymerase gene regions. Virology 136: 125–132

    PubMed  CAS  Google Scholar 

  • Spector DH, Baltimore D (1974) Requirement of 3’-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci USA 83: 2330–2334

    Google Scholar 

  • Spector DH, Baltimore D (1975a) Polyadenylic acid on poliovirus RNA. II. Poly(A) on intracellular RNAs. J Virol 15: 1418–1431

    Google Scholar 

  • Spector DH, Baltimore D (1975b) Polyadenylic acid on poliovirus RNA. IV. Poly(U) in replicative intermediate and double-stranded RNA. Virology 67: 498–505

    Google Scholar 

  • Stanway G, Cann AJ, Hauptmann R, Hughes P, Clarke LD, Mountford RC, Minor PD, Schild GC, Almond JW (1983) The nucleotide sequence of poliovirus type 3 leon 12 a, b: comparison with poliovirus type 1. Nucleic Acids Res 11: 5629–5643

    PubMed  CAS  Google Scholar 

  • Takeda N, Kuhn RJ, Yang CF, Takegami T, Wimmer E (1986) Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J Virol 60: 43–53

    PubMed  CAS  Google Scholar 

  • Takeda N, Yang CF, Kuhn RJ, Wimmer E (1987) Uridylylation of the genome-linked protein of poliovirus in vitro is dependent upon an endogenous RNA template. Virus Res 8: 193–204

    PubMed  CAS  Google Scholar 

  • Takegami T, Kuhn RJ, Anderson CW, Wimmer E (1983a) Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proc Natl Acad Sci USA 80: 7447–7451

    PubMed  CAS  Google Scholar 

  • Takegami T, Semler BL, Anderson CW, Wimmer E (1983b) Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. Virology 128: 33–47

    PubMed  CAS  Google Scholar 

  • Tershak DR (1982) Inhibition of poliovirus polymerase by guanidine in vitro. J Virol 41: 313–318

    PubMed  CAS  Google Scholar 

  • Tershak DR (1984) Association of poliovirus proteins with the endoplasmic reticulum. J Virol 52: 777–783

    PubMed  CAS  Google Scholar 

  • Tobin GJ, Young DC, Flanegan JB (1989) Self-catalized linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell 59: 511–519

    PubMed  CAS  Google Scholar 

  • Tolskaya EA, Romanova LA, Kolesnikova MS, Agol VI (1983) Intertypic recombination in poliovirus: genetic and biochemical studies. Virology 124: 121–132

    PubMed  CAS  Google Scholar 

  • Toyoda H, Kohara M, Kataoka Y, Suganuma T, Omata T, Imura N, Nomoto A (1984) Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants. J Mol Biol 174: 561–585

    Google Scholar 

  • Toyoda H, Yang C-F, Takeda N, Nomoto A, Wimmer E (1987) Analysis of RNA synthesis of type 1 poliovirus by using an in vitro molecular genetic approach. J Virol 61: 2816–2822

    PubMed  CAS  Google Scholar 

  • Trono D, Andino R, Baltimore D (1988) An RNA sequence of hundreds of nucleotides at the 5’ end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol 62: 2291–2299

    PubMed  CAS  Google Scholar 

  • Tuschall DM, Hiebert E, Flanegan JB (1982) Poliovirus RNA-dependent RNA polymerase synthesizes full-length copies of poliovirion RNA, cellular mRNA, and several plant virus RNAs in vitro. J Virol 44: 209–216

    PubMed  CAS  Google Scholar 

  • Urzainqui A, Carrasco L (1989) Post-translational modifications of poliovirus proteins. Biochem Biophys Res Commun 158: 263–271

    PubMed  CAS  Google Scholar 

  • Van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn J (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci USA 83: 2330–2334

    PubMed  Google Scholar 

  • Van Dyke TA, Flanegan JB (1980) Identification of poliovirus polypeptide p63 as a soluble RNA-dependent RNA polymerase. J Virol 35: 732–740

    PubMed  Google Scholar 

  • Van Dyke TA, Rickles RJ, Flanegan JB (1982) Genome-length copies of poliovirion RNA are synthesized in vitro by the poliovirus RNA dependent RNA polymerase. J Biol Chem 257: 4610–4617

    PubMed  Google Scholar 

  • Ward CD, Stokes MAM, Flanegan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62: 558–562

    PubMed  CAS  Google Scholar 

  • Wimmer E (1982) Genome-linked proteins of viruses. Cell 28: 199–201

    PubMed  CAS  Google Scholar 

  • Wu M, Davidson N, Wimmer E (1978) An electron microscope study of proteins attached to poliovirus RNA and its replicative form ( RF ). Nucleic Acids Res 5: 4711–4723

    Google Scholar 

  • Yogo Y, Wimmer E (1972) Polyadenylic acid at the 3’-terminus of poliovirus RNA. Proc Natl Acad Sci USA 69: 1877–1882

    PubMed  CAS  Google Scholar 

  • Yogo Y, Wimmer E (1973) Poly(A) and poly(U) in poliovirus double-stranded RNA. Nature New Biol 242: 171–174

    PubMed  CAS  Google Scholar 

  • Yogo Y, Wimmer E (1975) Sequence studies of poliovirus RNA III. Polyuridylic acid and polyadenylic acid as components of the purified poliovirus replicative intermediate. J Mol Biol 92: 467–477

    Google Scholar 

  • Young DC, Tuschall DM, Flanegan JB (1985) Poliovirus RNA-dependent RNA polymerase and host cell protein synthesize product RNA twice the size of poliovirus RNA in vitro. J Virol 54: 256–264

    PubMed  CAS  Google Scholar 

  • Young DC, Dunn BM, Tobin GJ, Flanegan JB (1986). Anti-VPg antibody precipitation of product RNA synthesized in vitro by the poliovirus polymerase and host factor is mediated by VPg on the poliovirion RNA template. J Virol 58: 715–723

    PubMed  CAS  Google Scholar 

  • Young DC, Tobin GJ, Flanegan JB (1987) Characterization of product RNAs synthesized in vitro by poliovirus RNA polymerase purified by chromatography on hydroxylapatite or poly(U) sepharose. J Virol 61: 611–614

    PubMed  CAS  Google Scholar 

  • Ypma-Wong MF, Dewalt PG, Johnson VH, Lamb JG, Semler BL (1988) Protein 3CD is the major poliovirus proteinase responsible for cleavage of the PI capsid precursor. Virology 166: 265–270

    PubMed  CAS  Google Scholar 

  • Zimmerman EF, Heeter M, Darnell JE (1963) RNA synthesis in poliovirus-infected cells. Virology 19: 400–408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richards, O.C., Ehrenfeld, E. (1990). Poliovirus RNA Replication. In: Racaniello, V.R. (eds) Picornaviruses. Current Topics in Microbiology and Immunology, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75602-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75602-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75604-7

  • Online ISBN: 978-3-642-75602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics