Relativity and the Earth’s Rotation

  • E. Gill
  • M. Soffel
  • H. Ruder
  • M. Schneider

Abstract

It is now widely appreciated that relativity plays an increasing role in the fields of astrometry, celestial mechanics and geodesy (see, e.g., Soffel 1989). Typical orders of magnitude associated with special and general relativistic effects are given by (v/c)2 and (GM/c 2 r) respectively, where v is a typical velocity of a body in an appropriate coordinate system, c is the speed of light; G is the gravitational constant, M the mass of a gravitating body and r the (coordinate) distance to it. E.g., for the motion of the Earth about the Sun (v /c)2~(GM /c 2A.U.)~10−8, whereas for the Earth’s rotation velocity (v r/c)2~ 10−12.

Keywords

Torque Argon Dinate Swivel Luni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker BM, O’Connell RF (1970) Derivation of the equations of motion of a gyroscope from the quantum theory of gravitation. Phys Rev D 2: 1428CrossRefGoogle Scholar
  2. Barker BM, O’Connell RF (1975) Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys Rev D 12: 329CrossRefGoogle Scholar
  3. Brumberg VA, Kopejkin SM (1988) Reference systems. In: Kovalevsky J, Mueller II, Kolaczek B (eds) Relativistic theory of celestial reference frames. Reidel, Dortrecht, p 115Google Scholar
  4. Brumberg VA, Kopejkin SM (1989) Relativistic reference systems and motion of test bodies in the vicinity of the earth. Nuovo Cimento 103 B: 63Google Scholar
  5. Everitt CWF (1974) Experimental gravitation (Proc of Course 56 of the Int School of Physics “Enrico Fermi”). In: Bertotti B (ed) The gyroscope experiment I: general description and analyses of gyroscope performance. Academic Press, New YorkGoogle Scholar
  6. Lieske JH (1979) Precession matrix based on IAU (1976) system of astronomical constants. Astron Astrophys 73: 282Google Scholar
  7. Lipa JA, Everitt CWF (1978) The role of cryogenics in the gyroscope experiment. Acta Astronautica 5: 119CrossRefGoogle Scholar
  8. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freeman, San FranciscoGoogle Scholar
  9. Scully MO, Zubairy MS, Haugan MP (1981) Proposed optical test of metric gravitation theories. Phys Rev A 24: 2009Google Scholar
  10. Schastok J, Soffel MH, Ruder H, Schneider M (1987) The post-Newtonian rotation of the Earth: a first approach. In: Wilkins G, Babcock A (eds) The Earth’s rotation and reference frames for geodesy and geodynamics. Proc of the TAU Symp No 128Google Scholar
  11. Shapiro II, Reasenberg RD, Chandler JF, Babcock RW (1988) Measurement of the de Sitter precession of the Moon: a relativistic three-body effect. Phys Rev Lett 61: 2643CrossRefGoogle Scholar
  12. Soffel MH (1989) Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  13. Thorne KS, Hartle JB (1985) Laws of motion and precession for black holes and other bodies. Phys Rev D31: 1815Google Scholar
  14. Voinov AV (1988) Motion and rotation of celestial bodies in the post-Newtonian approximation. Celest Mech 42: 293Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • E. Gill
    • 1
  • M. Soffel
    • 1
  • H. Ruder
    • 1
  • M. Schneider
    • 2
  1. 1.Lehrstuhl für Theor. AstrophysikTübingenGermany
  2. 2.Technische Universität MünchenMünchen 2Germany

Personalised recommendations