Skip to main content

Global Consequences of the Tidal Secular Deceleration for the Solid Earth and its Fluid Core

  • Conference paper
Earth’s Rotation from Eons to Days

Abstract

The problem of the secular deceleration of the Earth has been intensively studied in astronomy and geophysics in the frame of the evolution of the Earth/Moon/Sun system. In general, these studies are devoted to the different processes like mantle anelasticity or oceanic dissipation that can account for the braking of the Earth rotation; an important effort has also been undertaken in the observations to obtain the most accurate determination of this braking rate. Our contribution will mainly concern the various geodynamic consequences due to the secular deceleration. First we will consider the response of the fluid core when the mantle slows down. Then we investigate the radial and zonal deformation and related geometric and dynamic effects caused by changes in the rotational potential. The possibilities of resonant amplification in the Earth and core wobbles caused by forcing mechanisms related to the orbital motion of the Earth around the Sun supposed to be stable over geologic times are pointed out. Finally, possible implications of the secular change in the spin rate on the magnetic scaling laws, and especially on the history of the Earth magnetic field, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alterman Z, Jarosch H, Pekeris CH (1959) Oscillations of the Earth. Proc R Soc A 252:80–95.

    Article  Google Scholar 

  • Amalvict M, Hinderer J, Legros H (1986) Influence of elasticity on the precessions of the Earth and its fluid core. Proc 10th Int Symp Earth Tides, pp 321–326

    Google Scholar 

  • Bondi H, Lyttleton RA (1948) On the dynamical theory of the rotation of the Earth I. The secular deceleration of the core. Proc Camb Phil Soc 44: 345–359

    Article  Google Scholar 

  • Brosche P (1981) Geomagnetic reversals and tidal friction. Naturwissenschaften 68: 139

    Article  Google Scholar 

  • Brosche P, Hovel W (1982) Tidal friction for times around the presence. In: Brosche P, Sündermann

    Google Scholar 

  • J (eds) Tidal friction and the Earth’s rotation II. Springer, Berlin Heidelberg New York Tokyo, pp 175–189

    Google Scholar 

  • Brosche P, Sündermann J (eds) (1978) Tidal friction and the Earth’s rotation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brosche P, Sündermann J (eds) (1982) Tidal friction and the Earth’s rotation II. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burla M (1985) The Earth’s precession and nutations in geological epochs. Bull Astron Inst Czech 36: 139–141

    Google Scholar 

  • Busse FH (1975) A model of the geodynamo. Geophys J R Astron Soc 42: 437–459

    Article  Google Scholar 

  • Busse FH (1976) Generation of planetary magnetism by convection. Phys Earth Planet Int 12: 350–358

    Article  Google Scholar 

  • Cannon WH (1974) The Chandler annual resonance and its possible geophysical significance. Phys Earth Planet Int 9: 83–90

    Article  Google Scholar 

  • Christodoulidis DC, Smith DE, Williamson RG, Klosko SM (1988) Observed tidal braking in the Earth/Moon/Sun system. J Geophys Res 93: 6216–6236

    Article  Google Scholar 

  • Denis C (1986) On the changes of kinetical parameters of the Earth during geological times. Geophys J R Astron Soc 87: 559–568

    Google Scholar 

  • Denis C, Karafistan A, Amalvict M, Legros H (1987) Changing curvature and tectonic activity of planetary bodies. Proc CNES Meeting on Comparative Planetology and Earth Sciences, La Londeles-Maures, September 1987 (abstract in Geophys Rep Publ Inst Astrophys Liège, Belgium, 87/005)

    Google Scholar 

  • Dickman SR, Steinberg DJ (1986) New aspects of the equilibrium pole tide. Geophys J R Astron Soc 86:515 — 529

    Google Scholar 

  • Dolginov Sh (1975) The mechanism of planetary dynamos. Kosm Issled 13: 367–374

    Google Scholar 

  • Dolginov Sh (1976) On the question of the energy of the precessional dynamo. NASA Spec Publ SP-397:167 —170

    Google Scholar 

  • Gwinn CR, Herring TA, Shapiro II (1986) Geodesy by radiointerferometry: Studies of the forced nutations of the Earth, 2, Interpretation. J Geophys Res 91: 4755–4765

    Article  Google Scholar 

  • Hinderer J (1987) Sur quelques effets en rotation et déformation d’une planète à noyau liquide, manteau élastique et couche fluide superficielle. Thesis, Univ Strasbourg, 362 p

    Google Scholar 

  • Hinderer J, Legros H (1988) Tidal flow in the Earth’s core: a search for the epoch and amplitude of exact resonance in the past, in “Structure and Dynamics of the Earth’s deep Interior”. In: Srrylie DE, Hide R (eds) AGU Monograph Series 46: 79–82

    Google Scholar 

  • Hinderer J, Legros H, Amalvict M (1982) A search for Chandler and nearly diurnal free wobbles using Liouville equations. Geophys J R Astron Soc 71: 303–332

    Google Scholar 

  • Hinderer J, Legros H, Amalvict M (1987) Tidal motions within the Earth’s fluid core: resonance process and possible variations. Phys Earth Planet Int 49: 213–221

    Article  Google Scholar 

  • Jacobs JA (1977) Planetary magnetism. J Geomag Geoelect 29: 503–505

    Article  Google Scholar 

  • Lambeck K (1973) Temporal variations of rotational origin in the absolute value of gravity. Studia Geoph Geod 17: 269–271

    Article  Google Scholar 

  • Lambeck K (1975) The Chandler annual resonance. Phys Earth Planet Int 11:166–168

    Article  Google Scholar 

  • Lambeck K ( 1980 ) The Earth’s variable rotation. Univ Press, Cambridge

    Book  Google Scholar 

  • Legros H (1987) Sur quelques problèmes de dynamique planétaire. Thesis, Univ Strasbourg, 220 p Legros H, Hinderer J ( 1987 ) Precession of planetary bodies and magnetic implications. Proc CNES

    Google Scholar 

  • Meeting on Comparative Planetology and Earth Sciences, La Londe-les-Maures, September 1987

    Google Scholar 

  • Mansinha L, Shen PY (1976) Rotational deformation of the Earth. Phys Earth Planet Int 11: 200–206

    Article  Google Scholar 

  • Merrill RT, McElhinny MW (1983) The Earth’s magnetic field. Academic Press, London

    Google Scholar 

  • Neuberg J, Hinderer J, Zürn W (1987) Stacking gravity tide observations in Central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free wobble. Geophys J R Astron Soc 91:853 — 868

    Google Scholar 

  • Newton RR (1985) The secular acceleration of the Earth’s spin. Geophys J R Astron 80:313–328.

    Google Scholar 

  • Rochester MG, Smylie DE (1974) On changes in the trace of the Earth’s inertia tensor. J Geophys Res 79: 4948–4951

    Article  Google Scholar 

  • Rochester MG, Jacobs JA, Smylie DE, Chong KF (1975) Can precession power the geomagnetic dynamo? Geophys J R Astron Soc 43: 661–678

    Google Scholar 

  • Russell CT (1980) Planetary magnetism. Rev Geophys Space Phys 18: 77–106

    Article  Google Scholar 

  • Saito M (1974) Some problems of static deformation of the Earth. J Geophys Res 22:123–140

    Google Scholar 

  • Sasao T, Okubo S, Saito M (1980) A simple theory on dynamical effects of a stratified fluid core upon nutational motion of the Earth. In: Fedorov EP, Smith ML, Bender PL (eds) Proc IAU Symp No78, Nutation and the Earth’s rotation, Kiev, May 1977. Reidel, Dordrecht, pp 165–183

    Google Scholar 

  • Smith ML, Dahlen FA (1981) The period and Q of the Chandler wobble. Geophys J R Astron Soc 64:223–281

    Google Scholar 

  • Stacey FD (1969) Physics of the Earth. Wiley, New York

    Google Scholar 

  • Stevenson DJ (1974) Planetary magnetism. Icarus 22: 403–415

    Article  Google Scholar 

  • Stevenson DJ (1983) Planetary magnetic fields. Rep Prog Phys 46: 555–620

    Article  Google Scholar 

  • Stix M (1982) The rotation and the magnetic field of the Earth. In: Brosche P, Sündermann J (eds )Tidal friction and the Earth’s rotation II. Springer, Berlin Heidelberg New York Tokyo, pp 29–50

    Google Scholar 

  • Stoneley R (1924) The shrinkage of the Earth’s crust through diminishing rotations. R Astron Soc Geophys Suppl 1: 149–155

    Google Scholar 

  • Toomre A (1974) On the “nearly diurnal wobble” of the Earth. Geophys J R Astron Soc 38: 335–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinderer, J., Legros, H. (1990). Global Consequences of the Tidal Secular Deceleration for the Solid Earth and its Fluid Core. In: Brosche, P., Sündermann, J. (eds) Earth’s Rotation from Eons to Days. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75587-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75587-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75589-7

  • Online ISBN: 978-3-642-75587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics