Skip to main content

Tectonic Consequences of the Earth’s Variable Rotation on Geological Time Scales

  • Conference paper
Earth’s Rotation from Eons to Days

Abstract

The Earth-Moon system evolved quite considerably since its formation, both as regards its orbital parameters and the kinetic and dynamic properties of its individual components. The evolution in time of the interior and surface features of the Earth depends on a number of endogenous and exogenous factors. Exogenous agents of geological evolution are, for instance, meteorite impacts and luni-solar interactions causing tidal deformations. Primary endogenic evolutionary factors are the decay of abundant radioactive elements, as well as physical segregation and chemical fractionation processes, producing gravitational energy release and compositional change. Climatic mechanisms, such as glaciation-deglaciation cycles, which have both exogenous and endogenous causes, quite evidently also produce geological change which, however, seems to be of a more or less cyclic nature and probably does not affect the Earth’s deep interior. The purpose of this paper is to consider some aspects of the evolution over geological time spans which are, or may be, a consequence of the Earth’s tidal despinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amalvict M, Legros H (1986) Lithospheric stresses: gravito-elastic model and geometric deformation. Manuscripta Geodaetica 11: 197–206

    Google Scholar 

  • Amalvict M, Legros H (in press) Stresses in the lithosphere generated by a changing shape. In: Teisseyre R (ed) Physics and Evolution of the Earth’s Interior, Vol 5. PWN, Warszawa and Elsevier, Amsterdam

    Google Scholar 

  • Anderson EM (1951) The Dynamics of Faulting. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Berger AL (1976) Obliquity and precession for the last 5000000 years. Astron Astrophys 51:127–135 Birch F (1968) On the possibility of large changes in the Earth’s volume. Phys Earth Planet Int 1: 141–147

    Google Scholar 

  • Bodine JH, Steckler MS, Watts AB (1981) Observations of flexure and the rheology of the oceanic lithosphere. J Geophys Res 86 (B5): 9905–9918

    Article  Google Scholar 

  • Burns JA (1976) Consequences of the tidal slowing of Mercury. Icarus 28: 453–458

    Article  Google Scholar 

  • Burma M (1987) Final Report of IAG Special Study Group 5–99 “Tidal Friction and the Earth’s Rotation”. XIX Gen Ass IUGG, Vancouver, August 1987

    Google Scholar 

  • Clark SP Jr (ed) (1966) Handbook of Physical Constants (revised edition). Geol Soc Am Mem 97 Denis C (1985) The Hydrostatic Figure of the Earth. Geophys Rep Publ IAL, Réf 85/2, Univ Liège Denis C (1986a) On the change of kinetical parameters of the Earth during geological times. Geophys J R Astr Soc 87: 559–568

    Google Scholar 

  • Denis C (1986b) Lithospheric deformation caused by the secular change of the Earth’s rotation speed. Terra Cognita 6: 315 (abstr)

    Google Scholar 

  • Denis C (1989) The hydrostatic figure of the Earth. In: Teisseyre R (ed) Physics and Evolution of the Earth’s Interior, Vol 4, Gravity and Low-Frequency Geodynamics, Chap 3. PWN, Warszawa and Elsevier, Amsterdam, pp 111–186

    Google Scholar 

  • Denis C, Karafistan A, Amalvict M, Legros H (1987) Changing curvature and tectonic activity of planetary bodies. In: Proc CNES Scient Workshop Comparative Planetology and Earth Sciences, La Londe-les-Maures. Geophys Rep Publ IAL, 7: 3–15

    Google Scholar 

  • Diament M (1987) Isostasie, réponses mécanique et thermique de la lithosphère. Applications à la Géodynamique. Thèse de doctorat d’Etat, Univ. Paris-Sud, Centre d’Orsay

    Google Scholar 

  • Fairbridge RW (1972) Planetary spin-rate and evolving cores. Ann NY Acad Sci 187:88–107 Freeth SJ (1979) Deformation of the African plate as a consequence of membrane stress domains generated by post-Jurassic drift. Earth Planet Sci Lett 45: 93–104

    Google Scholar 

  • Goetze C, Evans B (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys J R Astr Soc 59: 463–478

    Google Scholar 

  • Ichiye T (1971) Continental breakup by nonstationary mantle convection generated with differential heating of the crust. J Geophys Res 76: 1139–1153

    Article  Google Scholar 

  • Jaeger JC (1978) Elasticity, Fracture and Flow, with Engineering and Geological Applications. Chapman and Hall, London

    Google Scholar 

  • Khan MA (1983) Revised value of the dynamical ellipticity of the Earth. Geophys J R Astr Soc 72: 327–331

    Google Scholar 

  • Kraus H (1967) Thin Elastic Shells. Wiley, New York

    Google Scholar 

  • Krohn J, Sündermann J (1982) Paleotides before the Permian. In: Brosche P, Sündermann J (eds) Tidal Friction and the Earth’s Rotation II. Springer, Berlin Heidelberg New York Tokyo, pp 190–209

    Chapter  Google Scholar 

  • Lambeck K (1977) Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Phil Trans R Soc London A287: 545–594

    Article  Google Scholar 

  • Lambeck K (1980) The Earth’s Variable Rotation: Geophysical Causes and Consequences. Univ Press, Cambridge

    Book  Google Scholar 

  • Lambeck K (1988) Geophysical Geodesy: The Slow Deformations of the Earth. Univ Press, Oxford Liu HS (1974) On the breakup of tectonic plates by polar wandering. J Geophys Res 79:2568–2572 McNutt M, Menard HW (1982) Constraints on yield strength in the oceanic lithosphere derived from observations of flexure. Geophys J R Astr Soc 71: 363–394

    Google Scholar 

  • Melosh HJ (1977) Global tectonics of a despun planet. Icarus 31: 221–243

    Article  Google Scholar 

  • Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier-Villars, Paris

    Google Scholar 

  • Moritz H, Mueller II (1987) Earth Rotation — Theory and Observation. Ungar, New York Runcorn SK (1965) Changes in the convection pattern in the Earth’s mantle and continental drift: evidence for a cold origin of the Earth. Phil Trans R Soc Lond A258: 228–251

    Google Scholar 

  • Scrutton CT (1978) Periodic growth features in fossil organisms and the length of the day and month. In: Brosche P, Sündermann J (eds) Tidal friction and the Earth’s Rotation. Springer, Berlin Heidelberg New York, pp 154–196

    Google Scholar 

  • Stoneley R (1924) The shrinkage of the Earth’s crust through diminishing rotation. Mon Not R Astr Soc Geophys Suppl 1: 149–155

    Google Scholar 

  • Stoyko A (1970) La variation séculaire de la rotation de la Terre et les problèmes connexes. Ann Guébhard (Neuchâtel) 46: 293–316

    Google Scholar 

  • Turcotte DL (1974) Membrane tectonics. Geophys J R Astron Soc 36: 33–42

    Google Scholar 

  • Turcotte DL (1979) Flexure. Adv Geophys 21: 51–86

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics. Wiley, New York

    Google Scholar 

  • Vening Meinesz FA (1947) Shear patterns of the Earth’s crust. Trans Am Geophys Un 28:1–61 Walter MR (ed) ( 1976 ) Stromatolites. Elsevier, Amsterdam

    Google Scholar 

  • Watts AB, Ribe NM (1984) On geoid heights and flexure of the lithosphere at seamounts. J Geophys Res 89 (B13): 11152–11170

    Article  Google Scholar 

  • Williams GE (1989) Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation. J Geol Soc Lond 146: 97–111

    Article  Google Scholar 

  • Zharkov VN, Trubitsyn VP (1978) Physics of Planetary Interiors. Pachart, Tucson

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denis, C., Varga, P. (1990). Tectonic Consequences of the Earth’s Variable Rotation on Geological Time Scales. In: Brosche, P., Sündermann, J. (eds) Earth’s Rotation from Eons to Days. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75587-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75587-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75589-7

  • Online ISBN: 978-3-642-75587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics