Heat Flow as an Indicator of the Dynamics of Deep Processes Occurring in Marginal Seas and Island Arcs of the Northwestern Pacific

  • P. M. Sychev
  • V. V. Soinov
  • O. V. Veselov
Part of the Exploration of the Deep Continental Crust book series (EXPLORATION)


High heat flow is characteristic of most back-arc basins and island arc volcanic fronts. Numerical calculations and comparisons with other geophysical and geochemical data show that the excess heat sources are distributed at depths of about 20–40 km, where there are layers characterized by high electrical conductivity and low velocities of seismic waves. A discussion of the available data leads to the conclusion that such layers contain melts of ultrabasic composition, the temperature of which reaches 1500 ± 100° C. Injection of high-temperature melts (magmas) from depths of 350–400 km into the uppermost mantle is suggested as the most realistic mechanism for providing rapid heat transport and thus formation of the zones or layers of melted material. By this scenario of deep processes, rising high-temperature melts create pressure that originates from the difference between their density and the density of the surrounding medium, and, as a result, extension failures are produced. These failure zones, in turn, become channels for rising of melts. At the levels where the density of melts is comparable to the density of the host medium, the melts intrude in mainly lateral directions according to a hydrofracture mechanism and megasills form.


Heat Flow Deep Process High Heat Flow Mantle Density Kuril Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson DL (1984) The Earth as a planet: paradigms and paradoxes. Science 223:347–354.CrossRefGoogle Scholar
  2. Arculus RJ (1981) Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics 75:111–133.CrossRefGoogle Scholar
  3. Artyushkov EV (1979) Geodinamika (Geodynamics). Nauka, Moscow, 328 pp 00 (in Russian).Google Scholar
  4. Asano S, Yamada T, Suyehiro K, Yoshii T, Misawa Y, Iizuka S (1981) Crustal structure in a profile off the Pacific coast of northeastern Japan by the refraction method with ocean bottom seismometers. J Phys Earth 29:267–281.CrossRefGoogle Scholar
  5. Balakina LM, Golubeva NV (1979) Osobennosti mehanizma ochagov glubokih zemletryaseniy Yaponskogo i Okhotskogo morei (Special features of a mechanism of deep earthquake foci of the Japan and Okhotsk Seas. Izv Akad Nauk SSR Ser Fizika Zemli 9:3–21 (in Russian).Google Scholar
  6. Barsukov VL, Kocharko LN, Polyakov AI, Ignatenko KI, Zinoviev AI (1979) Differentsiatsiya bazaltoidnyh rasplavov i formirovaniye seriy vulkanicheskih porod ostrovov Yuzhnoi Atlantiki (Differentiation of basaltoidal melts and formation of volcanic rock series of the southern Atlantic islands). Geochimiya 11:1587–1600 (in Russian).Google Scholar
  7. Blot C (1964) Origin profonde des seimes superfaciales et des eruptions volcaniques. Assoc Scismol Ser A Trav Sci (Toulouse) 23:103–121.Google Scholar
  8. Boldyrev SA (1985) Mantle heterogeneities within active margins of the World oceans and their seismological characteristics. In: Koboyashi K, Sacks IS (eds) Structures and processes in subducting zones. Tectonophysics 112:255-276.Google Scholar
  9. Carlslaw G Jaeger D (1964) Heat conductivity of solid bodies. Nauka, Moscow, 321 pp (in Russian).Google Scholar
  10. Creager KC, Jordan TH (1986) Slab penetration into the lower nantie beneath the Mariana and other island arcs of the northwest Pacific. J Geophys Res 91:3573–3589.CrossRefGoogle Scholar
  11. Fedotov SA (1974) Predvaritelnaya korta tel na glubinah 30–100 km v verhnei mantii pod Kamchatkoi, ekraniruyuschih P-i S-volny (A preliminary map of the bodies at a depth of 30–100 km in the upper mantle beneath Kamchatka, screening P-and S-waves). In: Scismicity and seismic prediction, the upper mantle properties and their relation to volcanism in Kamchatka. Nauka, Moscow, pp 176–179 (in Russian).Google Scholar
  12. Fedotov SA (1976) Geofizicheskiye dannyye o glubinnoi magmaticheskoi deyatelnosti pod Kamchatkoi i otsenka sil, vyzyvayuschin pod’yom magm k vulkanam (Geophysical data on deep magmatic activity beneath Kamchatka and estimation of the forces causing rise of magmas towards volcanoes). Izv Akad Nauk SSR Ser Geol 1976 (4):5-16 (in Russian).Google Scholar
  13. Fedotov SA, Gusev AA, Chernysheva GB, Shumilina LS (1985) Scismofokalnaya zona Kamchatki (geometriya, razmescheniya ochagov zemletryaseniy i svyaz s vulkanizmom) (A seismofocal zone of Kamchatka) (geometry, earthquake foci distribution and relation to volcanism). Volcanol Scismol 4:91–107 (in Russian).Google Scholar
  14. Feoktistov GD (1978) Petrologiya i usloviya formirovaniya trappovyh sillov (Petrology and conditions of formation of trap sills). Nauka, Novosibirsk, 168 pp (in Russian).Google Scholar
  15. Frolova TI, Kotorgin NF (1986) K probleme klassifikatsii pikritov i komatitov (On the problem of classification of picrites and komatites). Vestn Mosk Univ Ser 4 Geol 1986 (1):3-17 (in Russian).Google Scholar
  16. Gainanov AG, Pavlov YA, Stroev PA, Sychev PM, Tuyezov IK (1974) Anomalnyye gravitatsionnye polya dalnevostochnyh okrainnyh morei i prilegayuschei chasti Tikhogo okeana In: Sychev PM (ed) (Anomalous gravity fields of the Far East marginal seas and the adjacent part of the Pacific Ocean). Nauka, Novosibirsk, 108 pp (in Russian).Google Scholar
  17. Gough DL (1986) Mantle upflow tectonics in the Canadian Cordillera. J Geophys Res 91:1909–1919.CrossRefGoogle Scholar
  18. Hasemi AH, Ishii H, Tokagi A (1984) Fine structure beneath the Tohoku district, northwestern Japan Arc, as derived by an inversion of P-wave arrival times from local earthquakes. Tectonophysics 101:245–265.CrossRefGoogle Scholar
  19. Hein JR, Scholl DW, Miller J (1978) Episodes of Aleutian Ridge explosive volcanism. Science 199:137–141.CrossRefGoogle Scholar
  20. Hirahara K, Mikumo T (1980) Three-dimensional seismic structure of subducting lithosphere plates under the Japan Islands. Phys Earth Planet Int 21:109–119.CrossRefGoogle Scholar
  21. Honda S, Uyeda S (1983) Thermal process in subduction zones — a review and preliminary approach on the origin of arc volcanism. In: Shimozuru D, Yokoyama I (eds) Arc volcanism: physics and tectonics. Terra Scientific, Tokyo, pp 117–170.Google Scholar
  22. Honkura Y (1974) Electrical conductivity anomalies beneath the Japan Arc. J Geomag Geoelectr 26:147–171.CrossRefGoogle Scholar
  23. Honkura Y (1975) Partial melting and electrical conductivity anomalies beneath the Japan and Philippine seas. Phys Earth Planet Int 10:128–134.CrossRefGoogle Scholar
  24. Honkura Y (1978) Electrical conductivity anomalies in the Earth. Geophys Surv 3:225–254.CrossRefGoogle Scholar
  25. Honkura Y, Koyama S (1979) Electrical conductivity structure beneath the central part of Japan, as inferred from magnetotelluric fields of the Yatsugatoke magnetic observatory. Bull Earthquake Res Inst Tokyo Univ 54:491–501.Google Scholar
  26. Hsui AT, Toksöz MN (1979) The evolution of thermal structures beneath a subduction zone. Tectonophysics 60:43–60.CrossRefGoogle Scholar
  27. Julian BR, Sengupta MK (1973) Scismic travel time evidence for lateral inhomogeneity in the deep mantle. Nature 242:443–447.CrossRefGoogle Scholar
  28. Kaila KL, Krishan VG (1985) Lateral variation in the upper mantle velocity structure in the northwestern Pacific margin. Tectonophysics 112:227–253.CrossRefGoogle Scholar
  29. Kimura M, Kaneoka I, Kato Y et al. (1986) Report on DELP 1984 cruises in the Middle Okinawa Trough. Part 5. Topography and geology of the Central Grabens and their vicinity.Bull Earthquake Res Inst Tokyo Univ 61:269–310.Google Scholar
  30. Krylov SV, Mandelbaum MM, Mishenkin BP, Mishenkina Petrik GV, Seleznev VS (1981) Nedra Baikala po seismicheskim dannym (The interiors of Baikal from seismic data). Nauka, Novosibirsk, 105 pp (in Russian).Google Scholar
  31. Kushiro I (1986) Viscosity of partial melts in the upper mantle. J Geophys Res 91:9343–9350.CrossRefGoogle Scholar
  32. Lambert IB, Wyllie PJ (1970) Melting in the deep crust and upper mantle and the nature of the low velocity layer. Phys Earth Planet Int 3:316–322.CrossRefGoogle Scholar
  33. Lebedev EB, Khitarov NI (1979) Fizicheskiye svoistva magmaticheskih rasplavov (Physical properties of magmatic melts). Nauka, Moscow, 220 pp (in Russian).Google Scholar
  34. Lyapishev AM, Sychev PM, Semenov VY (1987) Struktura elektroprovodnosti verhnei mantii Kurilskoi kotloviny Okhotskogo morya (Electrical conductivity structure of the upper mantle of the Okhotsk Sea Kuril Basin). Tikhookeanskaya Geol 4:45–50 (in Russian).Google Scholar
  35. Magmaticheskiye gornyye porody (1983) In: Bogatikor OA (ed) Magmatic rocks Vol 3. Nauka, Moscow, 368 pp (in Russian).Google Scholar
  36. Marshall BV (1978) Recent heat flow measurements in the Aleutian Basin, Bering Sea. EOS 59:349–366.Google Scholar
  37. Mavko BB, Thomson GA (1983) Crustal and upper mantle structure of the northern and central Sierra Nevada. J Geophys Res 88:5874–5892.CrossRefGoogle Scholar
  38. Nesterenko GV, Suschevskaya NM (1981) Bazaltovyye stekla skvazhiny 442 B (Philippinskoye more) (Basaltic glasses of hole 442B in the Philippine Sea). Geochimiya 9:1380–1385 (in Russian).Google Scholar
  39. Noguma S, Kasahara J (1988) The P-wave structure of the lithosphere-asthenosphere in the Western Pacific: a comparison of ocean versus continent. Tectonophysics 147:85–93.CrossRefGoogle Scholar
  40. Nye CJ, Reid MR (1986) Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: implication for arc magnetogenesis. J Geophys Res 91:10271–10287.CrossRefGoogle Scholar
  41. Okada H (1979) New evidence of the discontinuous structure of the descending lithosphere as revealed by Sc Sp phase. J Phys Earth 27:553–563.Google Scholar
  42. Papadopoulos GA (1987) Large deep-focus shocks and significant volcanic eruptions in convergent plate boundaries during 1900–1980. Tectonophysics 138:223–233.CrossRefGoogle Scholar
  43. Popov VS (1972) Otsenki skorosti vnedreniya bazaltovyh daek i sillov (Estimates of the intrusion rate of basaltic dikes and sills). Geochimiya 6:713–718 (in Russian).Google Scholar
  44. Ren Jen Sun (1969) Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium. J Geophys Res 74:5995–6011.CrossRefGoogle Scholar
  45. Research Group for Crustal Resistivity Structure, Japan (1983) Preliminary report on study of resistivity structure beneath the northern Honsyu of Japan. J Geomag Geoelectr 35:589–608.CrossRefGoogle Scholar
  46. Rikitake T (1975) A model of the geoelectric structure beneath Japan. J Geomag Geoelectr 27:233–244.CrossRefGoogle Scholar
  47. Robson GR, Barr KG, Luna LC (1978) Extension failure: an earthquake mechanism. Nature 218:28–29.CrossRefGoogle Scholar
  48. Sacks IS, Okada H (1975) A comparison of anelasticity structure beneath western South America and Japan. Phys Earth Planet Int 9:211–229.CrossRefGoogle Scholar
  49. Shankland TJ, Waff HS (1977) Partial melting and electrical conductivity anomalies in the upper mantle. J Geophys Res 88:5409–5417.CrossRefGoogle Scholar
  50. Shimamura H, Tomoda Y, Asada T (1975) Scismographic observation at the bottom of the central basin fault of Philippine Sea. Nature 253:177–179.CrossRefGoogle Scholar
  51. Smiraov YB, Sugrobov VM (1982) Terrestrial heat flow in the northwestern Pacific. Tectonophysics 83:109–122.CrossRefGoogle Scholar
  52. Sobolev RN, Avilina IV (1986) Teplofizicheskiye aspekty vozniknoveniya suhih magmaticheskih rasplavov (Heat physical aspects of the origin of dry magmatic melts). Vestn Mosk Univ Ser 4 Geol 1986 (1):26-36 (in Russian).Google Scholar
  53. Soinov VV, Soloviev VN (1978) Statsionarnaya model temperatur verhnei mantii okhotomorskogo regiona (A stationary model of the upper mantle temperatures of the Okhotsk Sea region).In: Krasny ML (ed) Geophysical fields of the Asia-Pacific transition zone. Dalnevostochny Nauchny Centr Akad Nauk SSR, Yuzhno-Sakhalinsk pp 53–56 (in Russian).Google Scholar
  54. Spence DA, Turcotte DL (1985) Magma-driven propagation of cracks. J Geophys Res 90:575–580.CrossRefGoogle Scholar
  55. Starshinova EA (1980) Neodnorodnost stroyeniya kory i mantii Okhotskogo morya (Inhomogeneity in structure of the Okhotsk Sea crust and mantle). Dokl Akad Nauk SSR 255:1339–1343 (in Russian).Google Scholar
  56. Stern R (1982) Strontium isotopes from Circum-Pacific intraoceanic island arc and marginal basins: regional variations and implications for magma genesis. Geol Soc Am Bull 93:477–486.CrossRefGoogle Scholar
  57. Sundaralingam K (1978) Uppermost upper mantle beneath Solomon Sea. Search 9:155–156.Google Scholar
  58. Suvorov AA (1975) Glubinnoye stroyeniye zemnoi kory Yuzhno-Okhotskogo sektora po seismicheskim dannym (Crustal deep structure of the South-Okhotsk sector from seismic data). Nauka, Novosibirsk, 102 pp (in Russian).Google Scholar
  59. Suyehiro K, Sacks IS (1979) P-and S-wave velocity anomalies associated with the subducting lithosphere determined from travel-time residuals in the Japan region. Bull Scismol Soc Am 69:97–114.Google Scholar
  60. Sychev PM (1979) Glubinnyye i poverhnostnyye tektonicheskiye processy severo-zapadnoi chasti Tikhookeanskogo podvizhnogo poyasa (Deep and surficial tectonic processes of the northwestern Pacific mobile belt). Nauka, Moscow, 208 pp (in Russian).Google Scholar
  61. Sychev PM (1985) Anomalnyye zony v verhnei mantii, mehanizm ih obrazovaniya i rol v razvitii Struktur zemnoi kory (Anomalous zones in the upper mantle, a mechanism of their formation and a role in the development of crustal structures). Tikhookeanskaya Geol 6:25–35 (in Russian).Google Scholar
  62. Sychev PM, Sharaskin AY (1984) Heat flow and magmatism in the NW Pacific back-arc basins. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. Geol Soc Spec Publ No 16, Blackwell Sci Oxford, pp 173-181.Google Scholar
  63. Sychev PM, Soinov VV, Veselov OV, Volkova NA (1983) Heat flow and geodynamics of the northwestern Pacific. In: TWC Hilde TWC, Uyeda S (eds) Geodynamics of the western Pacific-Indonesian Region, AGU, Washington DC pp 237–247.CrossRefGoogle Scholar
  64. Tatsumi Y, Sakuyame M, Fukuyama H, Kushiro I (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825.CrossRefGoogle Scholar
  65. Turcotte D Schubert D (1985) Geodinamika: geologicheskiye prilozheniya fiziki sploshnyh sred (Geological implications to solid media physics). Mir, Moscow, 376 pp (in Russian).Google Scholar
  66. Tuezov IK, Veselov OV, Epaneshnikov VD, Lipina EN (1982) Geotermiya zapada Tikhogo okeana (Geothermics of the western Pacific). Tikhookeanskaya Geol 3:90–100 (in Russian).Google Scholar
  67. Uyeda S (1980) Review of heat flow studies in the eastern Asia and western Pacific region. UN ESCAP, CCOP/SOPAC Tech Bull 3:153–169.Google Scholar
  68. Watanabe T, Langseth MG, Anderson RN (1977) Heat flow in back-arc basins of the western Pacific. In: Talwani M, Pitman WC (eds) Island arcs, deep sea trenches and back-arc basins. Washington DC, Am Geophys Union, pp 137–161.CrossRefGoogle Scholar
  69. Weertman J (1971) Velocity at which liquid-filled cracks move in the Earth’s crust or in glaciers. J Geophys Res 76:8544–8553.CrossRefGoogle Scholar
  70. Woodhouse J, Dzewonski AM (1984) Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J Geophys Res 89:5953–5986.CrossRefGoogle Scholar
  71. Yoder, HS Jr (1976) Generation of basaltic magma. Natl Acad Sci, Washington, DC, 231 pp.Google Scholar
  72. Yukutake T, Filloux JH, Segawa J, Hamano Y, Utada H (1983) Preliminary report on a magnetotelluric array study in the northwest Pacific. J Geomag Geoelectr 35:575–588.CrossRefGoogle Scholar
  73. Zakariadze GS Dmitriev LV, Sobolev AV, Suschevskaya NM (1980) Petrology of basalts of holes 447A, 449 and 450, South Philippine Sea transect, Deep Sea Drilling Project Leg 59. In: Kroenke L, Scott R et al., Repts. DSDP, 59. Washington (US Govt. Printing Office), pp 669-680.Google Scholar
  74. Zakariadze GS, Sharaskin AY, Parkhomenko VS, Anoshin, GN (1984) Osobennosti evolyutsii yuzhnoi chasti Philippinskogo morya v svete dannyh po geohimii ostrovnyh dug i intradugovyh vpadin (Peculiarities of evolution of the southern part of the Philippine Sea from geochemical data on island arcs and intra-arc basins). In: Tauson LK (ed) Geochimiya Magmaticheskih Porod Okeana i Zon Sochleneniya Okean-Kontinent. Nauka, Novosibirsk, pp 126–144.Google Scholar
  75. Zakharov VV, Nikitin LV (1985) Mehanika pod’yoma magmy po treschinam (Mechanics of magma rising through cracks). Izv Akad. Nauk SSR Ser Fizika Zemli 7:14–24 (in Russian).Google Scholar
  76. Zlobin TK (1983) Stroyeniye zemnoi kory i verhnei mantii Maloi Kurilskoi gryady po seismicheskim dannym (Crustal and upper mantle structure of the Lesser Kuril Ridge from seismic data). Geotektonika 6:109–118 (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P. M. Sychev
  • V. V. Soinov
  • O. V. Veselov
    • 1
  1. 1.Institute of Marine Geology and GeophysicsFar Eastern Branch of the USSR Academy of SciencesYuzhno-SakhalinskUSSR

Personalised recommendations