Chaotic Attractors in a Model of Neocortex: Dimensionalities of Olfactory Bulb Surface Potentials Are Spatially Uniform and Event Related

  • J. E. Skinner
  • J. L. Martin
  • C. E. Landisman
  • M. M. Mommer
  • K. Fulton
  • M. Mitra
  • W. D. Burton
  • B. Saltzberg


The olfactory bulb has both the cell types and the neurochemicals intrinsic to neocortex, but it has a much simpler and better understood neurophysiological structure (Shepherd 1970). The amplitude of the field potential that occurs on the top of each columnar unit is linearly related to the firing probability of the immediately underlying output cell (Freeman and Schneider 1982; Gray et al. 1984, 1986). Thus the recording of all such surface potentials, at the spatial frequency of the functional units, makes possible knowledge of the total output of the bulb without having to make massive microelectrode penetrations.


Olfactory Bulb Chaotic Attractor Nucleus Reticularis Thalamus Phase Singularity Embedding Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson P, Wigstrom H (1980) Possible mechanisms for long-lasting potentiation of hippocam-pal synaptic transmission. In: Tsuko Y, Aghanoff BW (eds) Neurobiological basis of learning and memory. Wiley, New York, pp 17–47Google Scholar
  2. Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513–3517PubMedCrossRefGoogle Scholar
  3. Babloyantz A, Destexhe A (1987) Strange attractors in the human cortex. In: Rensing L, an der Heiden U, Mackey MC (eds) Temporal disorder in human oscillatory systems. Springer, Berlin Heidelberg New York, pp 48–56 (Springer series in synergetics, vol 36)Google Scholar
  4. Bak P (1985) Mode-locking and the transition to chaos in dissipative systems. Phys Scr 9:50–58CrossRefGoogle Scholar
  5. Bak P (1986) The devil’s staircase. Phys Today 86:38–45CrossRefGoogle Scholar
  6. Barnsley MF, Sloan AD (1988) A better way to compress images. Byte 13:215–223Google Scholar
  7. Barnsley MF, Massopust P, Strickland H, Sloan AD (1987) Fractal modeling of biological structures. NY Acad Sci 504:179–194CrossRefGoogle Scholar
  8. Bliss TVP, Goddard GV, Rives M (1983) Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J Physiol (Lond) 334:475–491PubMedGoogle Scholar
  9. Cannon WB (1931) Again the James-Lange and the thalamic theories of emotion. Psychol Rev 38:281–295CrossRefGoogle Scholar
  10. Chay TR, Rinzel J (1985) Bursting, beating, and chaos in an excitable membrane model. Biophys J 47:357–366PubMedCrossRefGoogle Scholar
  11. Chialvo DR, Jalife J (1987) Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330:749–752PubMedCrossRefGoogle Scholar
  12. Farmer JD (1982) Dimension, fractal, measures, and chaotic dynamics. In: Haken H (ed) Evolution of order and chaos. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Freeman WJ, Schneider WS (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19:44–56PubMedCrossRefGoogle Scholar
  14. Gleick J (1987) Chaos: making a new science. Penguin, New YorkGoogle Scholar
  15. Goldberger AL, Shabetai R, Bhargava V, West BJ, Mandel AJ (1984) Nonlinear dynamics, electrical alternans, and pericardial tamponade. Am Heart J 107:1297–1299PubMedCrossRefGoogle Scholar
  16. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica [D]9:183–208Google Scholar
  17. Gray CM, Freeman WJ, Skinner JE (1984) Associative changes in the spatial amplitude patterns of rabbit olfactory EEG are norepiriephrine-dependent. Soc Neurosci Abstr 10:121Google Scholar
  18. Gray CM, Freeman WJ, Skinner JE (1986) Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav Neurosci 100:585–596PubMedCrossRefGoogle Scholar
  19. Guevara MR, Glass L, Shrier A (1981) Phase locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1353PubMedCrossRefGoogle Scholar
  20. Haider M, Groll-Knapp E, Ganglberger JA (1981) Event related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:125–197PubMedCrossRefGoogle Scholar
  21. Hess B, Markus M (1987) Order and chaos in biochemistry. Trends Biochem Sci 12:45–48CrossRefGoogle Scholar
  22. Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:626–633CrossRefGoogle Scholar
  23. Hopkins WF, Johnston D (1984) Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 226:350–352PubMedCrossRefGoogle Scholar
  24. Krontiris-Litowitz J, Skinner JE, Birnbaumer L (1985) A muscarinic agonist (Ethmozine) prevents long-term potentiation in the hippocampal slice. Soc Neurosci Abstr 11:781Google Scholar
  25. Libet B (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci 8:529–566CrossRefGoogle Scholar
  26. Liebovitch LS, Sullivan MJ (1987) Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys J 52:979–988PubMedCrossRefGoogle Scholar
  27. Liebovitch LS, Fischbarg J, Koniarek JP, Todorova I, Wang M (1987) Fractal model of ion-channel kinetics. Biochim Biophys Acta 896:173–180PubMedCrossRefGoogle Scholar
  28. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  29. Markus M, Kuschmitz E, Hess B (1985) Properties of strange attractors in yeast glycolysis. Biophys Chem 22:95–105PubMedCrossRefGoogle Scholar
  30. Sejnowski TJ, Rosenberg CR (1987) Parallel networks that learn to pronounce English text. Complex Syst 1:145–168Google Scholar
  31. Shepherd GM (1970) The olfactory bulb as a simple cortical system: experimental analysis and functional implications. In: Schmitt FO (ed) The neurosciences: second study program. Rockefeller University Press, New York, pp 539–552Google Scholar
  32. Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10(2):161–173CrossRefGoogle Scholar
  33. Skinner JE (1971) Abolition of a conditioned, surface-negative, cortical potential during cryogenic blockade of the nonspecific thalamo-cortical system. Electroencephalogr Clin Neuro-physiol 31:197–209CrossRefGoogle Scholar
  34. Skinner JE (1984) Central gating mechanisms that regulate event-related potentials and behavior. In: Elbert T, Rochstroh B, Lutzenberger W, Birnbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York, pp 42–58CrossRefGoogle Scholar
  35. Skinner JE, Reed JC (1981) Blockade of a frontocortical-brainstem pathway prevents ventricular fibrillation of the ischémic heart in pigs. Am J Physiol 240:H1156–H1163Google Scholar
  36. Skinner JE, Yingling CD (1976) Regulation of slow potential shifts in nucleus retieularis thalami by the mesencephalic reticular formation and the frontal cortex. Electroencephalogr Clin Neurophysiol 40:288–296PubMedCrossRefGoogle Scholar
  37. Skinner JE, Yingling CD (1977) Central gating mechanisms that regulate event-related potentials and behavior: a neural model for attention. In: Desmedt JE (ed) Progress in clinical neuro-physiology, vol 1. Karger, Basel, pp 30–69Google Scholar
  38. Skinner JE, Beder S, Entman ML (1983) Psychological stress activates phosphorylase in the heart of the conscious pig without increasing heart rate and blood pressure. Proc Natl Acad Sci USA 80:4513–4517PubMedCrossRefGoogle Scholar
  39. Swanson LW, Teyler TJ, Thompson RF (eds) (1982) Hippocampus long-term potentiation: mechanisms and implications for memory. Neurosci Res Program Bull 20:613–769Google Scholar
  40. Szilagyi JE, Taylor AA, Skinner JE (1987) Cryoblockade of the ventromedial frontal cortex reverses hypertension in the rat. Hypertension 9:576–581PubMedGoogle Scholar
  41. Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev [A]34:2427–2432CrossRefGoogle Scholar
  42. Winfree AT (1983) Sudden cardiac death: a problem in topology. Sci 248:144–161Google Scholar
  43. Winfree AT (1987) When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton University Press, PrincetonGoogle Scholar
  44. Yingling CD, Skinner JE (1977) Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Desmedt JE (ed) Progress in clinical neurophysiology, vol 1. Karger, Basel, pp 70–96Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. E. Skinner
  • J. L. Martin
  • C. E. Landisman
  • M. M. Mommer
  • K. Fulton
  • M. Mitra
  • W. D. Burton
  • B. Saltzberg

There are no affiliations available

Personalised recommendations