Structured Linear Algebra Problems in Digital Signal Processing

  • Paul M. Van Dooren
Part of the NATO ASI Series book series (volume 70)


In this paper we give a survey of a number of linear algebra problems occurring in digital signal processing, where the structure of the matrices involved is crucial. Although the problems one wants to solve for these matrices are rather classical, one can not make use anymore here of standard linear algebra tools, since the structure of the matrices has to be taken into account. We discuss in this paper some of these problems and show how structure affects the sensitivity of the problem at hand and how algorithms should be adapted in order to cope with the structure constraint.


Condition Number Digital Signal Processing Toeplitz Matrix Toeplitz Matrice Hankel Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Antoulas and B. Anderson, State space and polynomial approaches to rational interpolation, Proceedings MTNS, 1989.Google Scholar
  2. [2]
    M. Arioli, J. Demmel and I. Duff, Solving sparse linear systems with sparse error bound, SIAM J. Matrix Anal. Appl 10: 165–190 (1989).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    A. Bultheel, Error analysis of incoming and outgoing schemes for the trigonometric moment problem, in: Lecture Notes on Mathematics 888, Springer Verlag, 1981.Google Scholar
  4. [4]
    J. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Lin. Alg. 6 Appl 88: 49–66 (1987).MathSciNetCrossRefGoogle Scholar
  5. [5]
    R. Byers, A. Bunse-Gerstner and V. Mehrmann, A chart of numerical methods for structured eigenvalue problems, SIAM J. Matrix Anal. Appl,to appear.Google Scholar
  6. [6]
    J. Cadzow, Signal enhancement: a composite property mapping algorithm, IEEE Trans. ASSP 10: 49–62 (1988).CrossRefGoogle Scholar
  7. [7]
    J. Chun and T. Kailath, Generalized displacement structure for blockToeplitz, Toeplitz-block and Toeplitz-derived matrices, these Proceedings,pp. 215–236.Google Scholar
  8. [8]
    G. Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Sci. 6 Stat. Comp. 1: 303–310 (1980).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G. Cybenko, The numerical stability of the lattice algorithm for least-squares linear prediction problems, BIT 24: 441–455 (1984).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    G. Cybenko and C. Van Loan, Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix, SIAM J. Sci. 6 Stat. Comp 7: 123–131 (1986).MATHCrossRefGoogle Scholar
  11. [11]
    L. S. de Jong, Towards a formal definition of numerical stability, Nu-mer. Math 28: 211–219 (1977).MATHCrossRefGoogle Scholar
  12. [12]
    J.-M. Delosme and I. Ipsen, Parallel solution of symmetric positive definite systems with hyperbolic rotations, Lin. Alg. 6 Appl 77: 75–111 (1986).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Ph. Delsarte, Y. Genin and Y. Kamp, On the role of the Nevanlinna Pick problem in circuit and system theory, Circuit Theory and Applications 9: 177–187 (1981).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Ph. Delsarte, Y. Genin, Y. Kamp and P. Van Dooren, Speech modelling and the trigonometric moment problem, Philips J. of Research 37: 277–292 (1982).MATHGoogle Scholar
  15. [15]
    J. Demmel, On condition numbers and the distance to the nearest ill-posed problem, Numer. Math 51: 251–289 (1987).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Fan and A. Tits, Characterization and efficient computation of the structured singular value, IEEE Trans. Aut. Contr. AC-31: 734–743 (1986).Google Scholar
  17. [17]
    I. Gohberg and I. Koltracht, Error analysis for Cauchy and Vandermonde matrices, Proceedings MTNS, Amsterdam, 1989.Google Scholar
  18. [18]
    G. H. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, 1989.MATHGoogle Scholar
  19. [19]
    N. J. Higham, Error analysis of the Björck-Pereyra algorithms for solving Vandermonde matrices, Numer. Math 50: 613–632 (1987).MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    W. M. Kahan, A survey of error analysis, Information Processing 71: 1214–1239, North Holland, 1972.MathSciNetGoogle Scholar
  21. [21]
    W. M. Kahan, Conserving confluence curbs ill-condition, Computer Sci. Techn. Rept. 6, Univ. of California at Berkeley, 1972.Google Scholar
  22. [22]
    C. Kenney and A. Laub, Condition estimates for the matrix sign function and polar decomposition, Sci. Comput. Lab. Techn. Rept., Univ. of California at Santa Barbara, 1989.Google Scholar
  23. [23]
    L. Ljung, M. Morf and D. Falconer, Fast calculations of gain matrices for recursive estimation schemes, Int. J. Contr 27: 1–19 (1978).MathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Ljung and L. Ljung, Error propagation of recursive least-squares adaptation algorithms, Automatica 20: 157–167 (1985).MathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Markel and A. Gray, Linear Prediction of Speech, Springer Verlag, 1976.MATHCrossRefGoogle Scholar
  26. [26]
    J. Rice, A theory of condition, SIAM J. Num. Anal 3: 287–310 (1966).MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    A. Shaw and R. Kumaresan, Some structured matrix approximation problems, Proceedings IEEE Conf. on ASSP: 2324–2327 (1988).Google Scholar
  28. [28]
    R. D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach 26: 494–526 (1979).MathSciNetMATHGoogle Scholar
  29. [29]
    S. Skogestad and M. Morari, Some new properties of the structured singular value, IEEE Trans. Aut. Contr. AC-33: 1151–1154 (1988).MathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Slock and T. Kailath, Numerically stable fast transversal filters for recursive least squares adaptive filters, IEEE Trans. ASSP,to appear.Google Scholar
  31. [31]
    W. Trench, Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices, SIAM J. Matrix Anal. Appl 10: 135–146 (1989).MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans. Aut. Contr. AC-26: 111–129 (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Paul M. Van Dooren
    • 1
  1. 1.Philips Research Laboratory BrusselsBrusselsBelgium

Personalised recommendations