Fundamental Physics and Chemistry

  • Klaus Sartor


This book is meant to be a comprehensive text-atlas of magnetic resonance (MR) imaging in diseases of the skull and brain. Although practical aspects of diagnosis are emphasized throughout, important theoretical concepts are addressed as well. What follows is a recapitulation of fundamental MR physics and chemistry; a discussion of biologic concepts can be found at the beginning of each clinical chapter (Chaps. 4–10).


Contrast Agent Radio Frequency Fundamental Physic Nuclear Magnetic Resonance Radio Frequency Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abart J, Brinker G, Irlbacher W, Grebmeier H (1989) Temperature and heart rate changes in MRI at SAR levels of 3 W/kg (Abstr). 8th SMRM Meeting, 12–19 August 1989, AmsterdamGoogle Scholar
  2. Abragam A (1961) The principles of nuclear magnetism. Clarendon, LondonGoogle Scholar
  3. Axel L (1986) Blood flow effects in magnetic resonance imaging. In: Kressel HY (ed) Magnetic resonance annual. Raven, New York, pp 237–244Google Scholar
  4. Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 70: 460–474CrossRefGoogle Scholar
  5. Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27: 572–573CrossRefGoogle Scholar
  6. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73: 679–712CrossRefGoogle Scholar
  7. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11: 425–448PubMedCrossRefGoogle Scholar
  8. Brasch RC (1983) Methods of contrast enhancement for NMR imaging and potential applications. Radiology 147: 781–788PubMedGoogle Scholar
  9. Brasch RC, London DA, Wesbey GE, Tozer TN, Nitecki DE, Williams RD, Doemeny J, Tuck LD, Lallemand DP (1983) Nuclear magnetic resonance study of paramagnetic nitroxide contrast agent for enhancement of renal structures in experimental animals. Radiology 147:773–779PubMedGoogle Scholar
  10. Budinger TF (1981) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr 5: 800–811PubMedCrossRefGoogle Scholar
  11. Bundesgesundheitsamt (BGA) (1984) Empfehlungen zur Vermeidung gesundheitlicher Risiken verursacht durch magnetische und hochfrequente elektromagnetische Felder bei der NMR-Tomographie und In-vivo-NMR-Spektroskopie. Bundesgesundheitsblatt 27: 92–96Google Scholar
  12. Cacheris WP, Nickle SK, Sherry AD (1986) A colorimetric method for the determination of gadolinium(III)-chelate stability constants (Abstr). 5th SMRM Meeting, 19–22 August 1986, MontrealGoogle Scholar
  13. Carr DH, Brown J, Bydder GM, Weinmann HJ, Speck U, Thomas DJ, Young IR (1984) Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumors. Lancet 2: 484–486CrossRefGoogle Scholar
  14. Chen CW, Cohen JS, Myers CE, Sohn M (1984) Paramagnetic metallorphins as potential contrast agents in NMR imaging. FEBS Lett 168: 70–74PubMedCrossRefGoogle Scholar
  15. Claussen C, Laniado M, Schörner W, Niendorf HP, Weinmann HJ, Fiegler W, Felix R (1985) The use of gadolinium-DTPA in magnetic resonance imaging of glioblastomas and intracranial metastases. AJNR 6: 669–674PubMedGoogle Scholar
  16. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153PubMedCrossRefGoogle Scholar
  17. Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149PubMedCrossRefGoogle Scholar
  18. Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37: 93–102CrossRefGoogle Scholar
  19. Food and Drug Administration (FDA) (1988) Medical devices; draft guidance for premarket notification submissions for magnetic resonance diagnostic devices; availability. Fed Reg 53 (233): 48981Google Scholar
  20. Foster KR, Resing HA, Garroway AN (1976) Bounds on “bound water”: transverse nuclear magnetic resonance relaxation in barnacle muscle. Science 194: 324–326PubMedCrossRefGoogle Scholar
  21. Garroway AN, Granneil PK, Mansfield P (1974) Image formation in NMR by selective irradiative process. J Phys [C] 7: L457–L462Google Scholar
  22. Gyngell ML, Palmer ND, Eastwood LM (1986) The application of steady-state free precession (SFP) in 2D-FT MR imaging (Abstr). 5th SMRM Meeting, 19–22 August 1986, MontrealGoogle Scholar
  23. Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67: 258–266Google Scholar
  24. Hahn EL (1950) Spin echos. Phys Rev 80: 580–594Google Scholar
  25. Haley TJ (1965) Pharmacology and toxicology of the rare earth elements. J Pharm Sci 54: 663–670PubMedCrossRefGoogle Scholar
  26. Henkelman RM, Bronskill MJ (1987) Artifacts in magnetic resonance imaging. Rev Magn Reson Med 2: 1–126Google Scholar
  27. Hinshaw WS (1976) Image formation by nuclear magnetic resonance: the sensitive point method. J Appl Phys 47: 3709–3721CrossRefGoogle Scholar
  28. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatography experiment involving human samples. J Magn Reson 34: 425–433Google Scholar
  29. Koenig SH, Spiller M, Brown RD, Wolf GL (1986) Magnetic field dependence (NMRD profile) of 1/T1 of rabbit kidney medulla and urine after intravenous injection of Gd(DTPA). Invest Radiol 21: 697–704PubMedCrossRefGoogle Scholar
  30. Krestel E (ed) (1990) Imaging systems for medical diagnostics, Siemens, Berlin, pp 479–556Google Scholar
  31. Kumar A, Welti D, Ernst RR (1975) NMR Fourier zeugmatography. J Magn Reson 18: 69–83Google Scholar
  32. Laub GA, Kaiser WA (1988) MR angiography with gradient refocussing. J Comput Assist Tomogr 12:377–382PubMedCrossRefGoogle Scholar
  33. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87: 901–927CrossRefGoogle Scholar
  34. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190–191CrossRefGoogle Scholar
  35. Lauterbur PC, Mendonca-Dias MH, Rudin AM (1978) Augmentation of tissue water protein spin-lattice rates by in-vivo addition of paramagnetic ions. Front Biol Eng 1: 752–759Google Scholar
  36. Ludeke KM, Roschmann P, Tischler (1985) Susceptibility artifacts in NMR imaging. Magn Res Imaging 3: 329–343CrossRefGoogle Scholar
  37. Magerstaedt M, Gansow OA, Brechbiel MW, Colcher D, Baltzer L, Knop RH, Girton ME, Naegele M (1986) Gd(DOTA): and alternative to Gd(DTPA) as a T1, 2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Med 3: 808–812CrossRefGoogle Scholar
  38. Mansfield P, Grannell PK (1973) NMR ‘diffraction’ in solids? J Phys [C] 6: L422–L426Google Scholar
  39. Masaryk TJ, Modic MT, Ruggieri PM, Ross JS, Laub GL, Lenz GW, Tkach JA, Haacke EM, Selman WR, Harik SI (1989) Three-dimensional (volume) gradient-echo imaging of the carotid bifurcation: preliminary clinical experience. Radiology 171: 801–806PubMedGoogle Scholar
  40. McNamara MT, Wesbey GE, Brasch RC (1985) Magnetic resonance imaging of acute myocardial infarction using a nitroxyle spin label PCA. Invest Radiol 20: 591–595PubMedCrossRefGoogle Scholar
  41. Mendonca-Dias MH, Gaggelli E, Lauterbur PC (1983) Paramagnetic contrast agents in nuclear magnetic resonance imaging. Semin Nucl Med 13: 364–376PubMedCrossRefGoogle Scholar
  42. National Radiological Protection Board (NRPB) (1983) Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. Br J Radiol 56: 974–977CrossRefGoogle Scholar
  43. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W (1986) FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica 54:15–18Google Scholar
  44. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69: 37–38CrossRefGoogle Scholar
  45. Rosen GM, Griffeth LK, Brown MA, Drayer BP (1987) Intrathecal administration of nitroxides as potential contrast agents for MR imaging. Radiology 163: 239–243PubMedGoogle Scholar
  46. Runge VM, Clanton JA, Foster MA, Smith FW, Lukehart CH, Jones MM, Partain CL, James AE (1984 a) Paramagnetic NMR contrast agents development and evaluation. Invest Radiol 19: 408–415PubMedCrossRefGoogle Scholar
  47. Runge M, Clanton JA, Herzer WA, Prince AG, Weinmann HJ (1984 b) The application of paramagnetic contrast agents to magnetic resonance imaging. Non-invasive Med Imaging 1:137–147Google Scholar
  48. Runge VM, Kaufman DM, Wood ML, Jacobsen S, Tweedle MF, Wolpert SM (1988) Animals trials with Gd-D03A — a nonionic MR contrast agent. AJNR 9: 1012Google Scholar
  49. Sander B, Schörner W, Bittner R, Felix R (1988) Fast MRI with a heavily T2-weighted PSIF sequence. Magn Reson Imaging [Suppl 1] 6: 89CrossRefGoogle Scholar
  50. Schmiedl U, Ogan M, Paajanen H, Marooti M, Crooks LE, Brito AC, Brasch RC (1987) Albumin labeled with Gd-DTPA as an intravascular, blood pool enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 162: 205–210PubMedGoogle Scholar
  51. Schörner W, Felix R, Laniado M, Lange L, Weinmann HJ, Claussen C, Fiegler W, Speck U, Kazner E (1984) Prüfung des kernspintomographischen Kontrastmittels Gadolinium-DTPA am Menschen; Verträglichkeit, Kontrastbeeinflussung und erste klinische Ergebnisse. Fortschr Geb Röntgenstr 140: 492–500Google Scholar
  52. Soila KP, Viamonte M, Starewicz PM (1984) Chemical shift misregistration effect in magnetic resonance imaging. Radiology 153: 819–820PubMedGoogle Scholar
  53. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99: 559–565CrossRefGoogle Scholar
  54. Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg J, Ferrucci JT (1988) Superparamagnetic iron oxide: clinical application as a contrast a gent for MR imaging of the liver. Radiology 168: 297–301PubMedGoogle Scholar
  55. Täuber U, Weinmann HJ, Panzer M, Acksteiner B, Vollert B, Schulze PE (1986) Whole-body autoradiographic studies in rats with gadolinium-diethylenetriaminepentaacetic acid, a new contrast agent for magnetic resonance imaging. Arzneimittelforschung 36: 1089–1091PubMedGoogle Scholar
  56. Van der Meulen P, Groen JP, Tinus AMC, Bruntik G (1988) Fast field echo imaging: an overview and contrast calculations. Magn Reson Imaging 6: 355–368PubMedCrossRefGoogle Scholar
  57. Villringer A, Rosen B, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Choa YS, Wedeen J, Brady TJ (1987) NMR study of lanthanide chelates in normal brain: changes in signal intensity due to susceptibility and diffusion effects. J Magn Reson Med 6:164–168CrossRefGoogle Scholar
  58. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984 a) Characteristics of gadolinium-DTPA complex, a potential NMR contrast agent. AJR 142: 619–624PubMedGoogle Scholar
  59. Weinmann HJ, Laniado M, Mützel W (1984 b) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMedGoogle Scholar
  60. Weinmann HJ, Mützel W, Zurth CH, Gries H, Speck U (1985) New contrast agents for magnetic resonance imaging. 16th International Congress of Radiology, 8–12 July 1986, HawaiiGoogle Scholar
  61. Weissleder R, Elizondo G, Stark DD, Hahn PF, Marfil J, Gonzalez JF, Saini S, Todd LE, Ferrucci JT (1989) The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. AJR 152:175–180PubMedGoogle Scholar
  62. Worah D, Berger AE, Burnett KR, Cockrill HH, Kanal E, Kendall C, Leese PT, Lyons KP, Ross E, Wold GL (1988) Ferrioxamine as a magnetic resonance contrast agent. Preclinical studies and phase I and II human clinical trials. Invest Radiol 23: 281–285CrossRefGoogle Scholar
  63. Zimmerman JR, Brittin WE (1957) Nuclear magnetic resonance studies in multiple phase systems: lifetime of a water molecule in an absorbing phase on silica gel. J Phys Chem 61: 1328–1333CrossRefGoogle Scholar
  64. Zimmermann B, Hentschel D (1987) Wirkung eines statischen Magnetfeldes (3.5 T) auf das Reproduktionsverhalten von Mäusen, auf die embryonale und fetale Entwicklung und auf ausgewählte hämatologische Parameter. Digitale Bilddiagn 7:155–161PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Klaus Sartor
    • 1
  1. 1.Dept. of Neuroradiology; Center for Neurological Diseases and Diseases of the Head and Neck (Kopfklinik)University of HeidelbergHeidelbergGermany

Personalised recommendations