Cell Receptors pp 495-516 | Cite as

Lineage-Specific Receptors in the Diagnosis of Malignant Lymphomas and Myelomonocytic Neoplasms

  • M. R. Parwaresch
  • H. Kreipe
  • H. J. Radzun
  • H. Griesser
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 83)


Surface receptors usually represent transmembrane glycoproteins serving the ability of cells to react to environmental conditions. The reaction of ligands with the corresponding receptor is the decisive event promoting transmembrane signals and triggering a complicated chain of intracellular reactions. The overwhelming majority of surface receptors in hematopoietic cells regulate growth, differentiation, defense, adaptation, and other physiological cell functions. Their involvement in neoplastic processes is mostly secondary in nature, although they may be prone to allow external influences upon the dysregulated growth mechanisms.


Acute Myeloid Leukemia Gene Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt F, Blackwell K, Yancopoulos GD (1987) Development of the primary antibody repertoire. Science 238:1079–1083PubMedCrossRefGoogle Scholar
  2. Baumbach WR, Colston EM, Cole MD (1988) Integration of the BALB/c ecotropic provirus into the colony-stimulating factor-1 growth factor locus in a myc retro virus-induced murine monocyte tumor. J Virol 62:3151–3155PubMedGoogle Scholar
  3. Bishop JM (1983) Cellular oncogenes and retroviruses. Ann Rev Biochem 52:301–354PubMedCrossRefGoogle Scholar
  4. Bödewadt S, Radzun H J, Feller AC, Parwaresch MR (1986) Immunophenotyping of acute non-lymphoblastic leukaemias. Virchows Arch [B] 51:79–88CrossRefGoogle Scholar
  5. Brenner MB, Strominger JL, Krangel MS (1988) The γ/δ T-cell receptor. In: Dixon FJ (ed) Advances in immunology, vol 43. Academic, Orlando, pp 133–192CrossRefGoogle Scholar
  6. Campana D, Janossy G, Coustan-Smith E, Amlot PL, Tian WT, Wong L (1989) The expression of T-cell receptor-associated proteins during T-cell ontogeny in man. J Immunol 142:57–65PubMedGoogle Scholar
  7. Cedar H (1988) DNA methylation and gene activity. Cell 53:3–4PubMedCrossRefGoogle Scholar
  8. Champagne E, Sagman U, Biondi A, Lewis WH, Mak TW, Minden MD (1988) Structure and rearrangement of the T-cell receptor Jα locus in T-cells and leukemic T-cell lines. Eur J Immunol 18:1033–1038PubMedCrossRefGoogle Scholar
  9. Cossman J, Uppenkamp M, Sundeen J, Coupland R, Raffeid M (1988) Molecular genetics and the diagnosis of lymphoma. Arch Pathol Lab Med 112:117–127PubMedGoogle Scholar
  10. Coussens L, Van Beveren C, Smith D et al. (1986) Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature 320:277–280PubMedCrossRefGoogle Scholar
  11. Davey MP, Bongiovanni KF, Kaulfersch W et al. (1986) Immunoglobulin and T-cell receptor gene rearrangement and expression in human lymphoid leukemia cells at different stages of maturation. Proc Natl Acad Sci USA 83:8759–8763PubMedCrossRefGoogle Scholar
  12. Dexter TM, Allen TD (1983) The regulation of growth and development of normal and leukaemic cells. J Pathol 141:415–433PubMedCrossRefGoogle Scholar
  13. Downward J, Yarden Y, Mayes E et al. (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307:521–527PubMedCrossRefGoogle Scholar
  14. Foon KA, Todd III RF (1986) Immunological classification of leukemia and lymphoma. Blood 68:1–31PubMedGoogle Scholar
  15. Frank MM (1987) Complement in the pathophysiology of human disease. N Engl J Med 316:1525–1530PubMedCrossRefGoogle Scholar
  16. Gisselbrecht S, Fichelson S, Sola B et al. (1987) Frequent c-fms activation by pro viral insertion in mouse myeloblastic leukaemias. Nature 329:259–261PubMedCrossRefGoogle Scholar
  17. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci (USA) 76:333–337CrossRefGoogle Scholar
  18. Griesser H, Mak TW (1988) Immunogenotyping in Hodgkin’s disease. Hematol Oncol 6:239–245PubMedCrossRefGoogle Scholar
  19. Griesser H, Feller AC, Lennert K, Minden M, Mak TW (1986a) Rearrangement of the β chain of the T-cell antigen receptor and immunoglobulin genes in lymphoproliferative disorders. J Clin Invest 78:1179–1184PubMedCrossRefGoogle Scholar
  20. Griesser H, Feller AC, Lennert K et al. (1986b) The structure of the T-cell gamma chain gene in lymphoproliferative disorders and lymphoma cell lines. Blood 68:592–594PubMedGoogle Scholar
  21. Griesser H, Tkachuk D, Reis MD, Mak TW (1989) Gene rearrangements and translocations in lymphoproliferative diseases. Blood 73:1402–1415PubMedGoogle Scholar
  22. Griesser H, Feller AC, Sterry W (1990) T cell receptor and immunoglobulin gene rearrangements in cutaneous T cell-rich pseudolymphomas. J Invest Dermatol 95 (in press)Google Scholar
  23. Hanson CA, Frizzera G, Patton DF, Peterson BA, McClain KL, Gajl-Peczalska KJ, Kersey JH (1988) Clonal rearrangement for immunoglobulin and T-cell receptor genes in systemic Castle-man’s disease. Am J Pathol 131:84–91PubMedGoogle Scholar
  24. Hara J, Benedict SH, Mak TW, Gelfand EW (1987) T-cell receptor α-chain gene rearrangements in B-precursor leukemia are in contrast to the findings in T-cell acute lymphoblastic leukemia — comparative study of T-cell receptor gene rearrangement in childhood leukemia. J Clin Invest 80:1770–1777PubMedCrossRefGoogle Scholar
  25. Hara J, Benedict SH, Champagne E, Takihara Y, Mak TW, Minden M, Gelfand EW (1988) T-cell receptor Ö gene rearrangements in acute lymphoblastic leukemia. J Clin Invest 82:1974–1981PubMedCrossRefGoogle Scholar
  26. Haynes BF, Singer KH, Denning SM, Martin ME (1988) Analysis of expression of CD2, CD3, and T-cell antigen receptor molecules during early human fetal thymic development. J Immunol 141:3776–3784PubMedGoogle Scholar
  27. Hogg N (1988) The structure and function of Fc receptors. Immunol Today 9:185–187PubMedCrossRefGoogle Scholar
  28. Jenkinson EJ, Kingston R, Owen JJT (1987) Importance of IL-2 receptors in intra-thymic generation of cells expressing T-cell receptors. Nature 329:160–162PubMedCrossRefGoogle Scholar
  29. Knapp W (1982) Monoclonal antibodies against differentiation antigens of myelopoiesis. Blut 45:301–308PubMedCrossRefGoogle Scholar
  30. Kreipe H, Radzun HJ, Heidorn K, Parwaresch MR, Verrier B, Müller R (1986) Lineage-specific expression of c-fos and c-fms in human hematopoietic cells: discrepancies with the in vitro differentiation of leukemia cells. Differentiation 33:56–60PubMedCrossRefGoogle Scholar
  31. Kreipe H, Radzun HJ, Rudolph P, Barth J, Hansmann ML, Heidorn K, Parwaresch MR (1988) Multinucleated giant cells generated in vitro: terminally differentiated macrophages with down-regulated c-fms expression. Am J Pathol 130:232–243PubMedGoogle Scholar
  32. Kurland JS, Peius LM, Ralph P, Bockman RS, Moore MAS (1979) Induction of prostaglandin Esynthesis in normal and neoplastic macrophages: role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation. Proc Natl Acad Sci USA 76:2326–2341PubMedCrossRefGoogle Scholar
  33. Ladner MB, Martin GA, Noble JA, Nikoloff DM, Tal R, Kawasaki ES, White TJ (1987) Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J 6:2693–2698PubMedGoogle Scholar
  34. Leder LD (1967) Der Blutmonozyt. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Leder P (1982) The genetics of antibody diversity. Sci Am 246:72–83CrossRefGoogle Scholar
  36. Lefranc MP, Forster A, Baer T, Stinson MA, Rabbitts TH (1986) Diversity and rearrangement of the human T-cell rearranging γ genes: Nine germline variable genes belonging in two subgroups. Cell 45:237–246PubMedCrossRefGoogle Scholar
  37. Lin HS, Gordon S (1979) Secretion of plasminogen activator by bone marrow-derived mononuclear phagocytes and its enhancement by colony-stimulating factor. J Exp Med 150:231–245PubMedCrossRefGoogle Scholar
  38. Makgoba MW, Sanders ME, Luce GEG et al. (1988) ICAM-1, a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 331:86–88PubMedCrossRefGoogle Scholar
  39. McMichael A (1987) Leucocyte typing III - white cell differentiation antigens. Oxford University Press, OxfordGoogle Scholar
  40. Metcalf D (1986) The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257–267PubMedGoogle Scholar
  41. Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haematopoietic cells. Nature 339:27–30PubMedCrossRefGoogle Scholar
  42. Nienhuis AW, Bunn HF, Turner PH, Gopal TV, Nash WG, O’Brien SJ, Sherr CJ (1985) Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q-syndrome. Cell 42:421–428PubMedCrossRefGoogle Scholar
  43. Parwaresch MR, Wacker HH (1984) Origin and kinetics of resident tissue macrophages. Parabiosis studies with radiolabeled leucocytes. Cell Tissue Kin 17:25–39Google Scholar
  44. Parwaresch MR, Radzun HJ, Feller AC, Peters KP, Hansmann ML (1983) Peroxidase-positive mononuclear leukocytes as possible precursors of human dendritic reticulum cells. J Immunol 131:2719–2725PubMedGoogle Scholar
  45. Parwaresch MR, Kreipe H, Feigner J, Heidorn K, Jaquet K, Bödewadt-Radzun S, Radzun HJ (1990) M-CSF and M-CSF receptor gene expression in acute myelomonocytic leukemias. Leukemia Res 14:27–37CrossRefGoogle Scholar
  46. Radzun H J, Kreipe H, Heidorn K, Parwaresch MR (1988a) Modulation of c-fms proto-oncogene expression in human blood monocytes and macrophages. J Leukocyte Biol 44:198–204PubMedGoogle Scholar
  47. Radzun HJ, Kreipe H, Zavzava ML, Parwaresch MR (1988b) Diversity of the human monocyte/ macrophage system as detected by monoclonal antibodies. J Leukocyte Biol 43:41–50PubMedGoogle Scholar
  48. Radzun HJ, Parwaresch MR, Stingi G, Knapp W (1989) Neoplasms of monocytes, macrophages and dendritic cells. In: Asherson GL, Zembala M (eds) Human monocytes. Academic, LondonGoogle Scholar
  49. Rambaldi A, Wakamiya N, Vellenga E, Horiguchi J, Warren MK, Kufe D, Griffm JD (1988) Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblasts leukemia cells. J Clin Invest 81:1030–1035PubMedCrossRefGoogle Scholar
  50. Reis MD, Griesser H, Mak TW (1988) Gene rearrangements in leukemias and lymphomas. In: Hoffbrand AV (ed) Recent advances in haematology, vol 5. Churchill Livingstone, Edinburgh, pp 99–120Google Scholar
  51. Rettenmier CW, Chen JH, Roussel MF, Sherr CJ (1985) The product of the c-fms proto-oncogene: a glycoprotein with associated tyrosine kinase activity. Sci Am 228:320–322Google Scholar
  52. Rosenthal AS (1980) Regulation of the immune response — role of the macrophage. N Engl J Med 303:1153–1156PubMedCrossRefGoogle Scholar
  53. Roussel MF, Downing JR, Rettenmier CW, Sherr CJ (1988a) A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 55:979–988PubMedCrossRefGoogle Scholar
  54. Roussel MF, Rettenmier CW, Sherr CJ (1988b) Introduction of a human colony stimulating factor-1 gene into a mouse macrophage cell line induces CSF-1 independence but not tumorigenicity. Blood 71:1218–1225PubMedGoogle Scholar
  55. Seremetis SV, Pelicci PG, Tabilio A et al. (1987) High frequency of clonal immunoglobulin and T-cell receptor gene rearrangements in acute myelogenous leukemia expressing terminal deoxynucleotidyl transferase. J Exp Med 165:1703–1712PubMedCrossRefGoogle Scholar
  56. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms protooncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676PubMedCrossRefGoogle Scholar
  57. Shimonkovitz RP, Husmann LA, Bevan M J, Crispe IN (1987) Transient expression of IL-2 receptor precedes the differentiation of immature thymocytes. Nature 329:157–159CrossRefGoogle Scholar
  58. Shreffler DC (1988) Seventy-five years of immunology: The view from the MHC. J Immunol 141:1791–1798PubMedGoogle Scholar
  59. Simmons D, Makgoba MW, Seed B (1988) ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NC AM. Nature 331:624–627PubMedCrossRefGoogle Scholar
  60. Sklar JL, Weiss LM, Cleary ML (1987) Diagnostic molecular biology of non-Hodgkin’s lymphomas. In: Berard CW, Dorman RF, Kaufman N (eds) Malignant lymphoma. Williams & Wilkins, Baltimore, pp 204–224Google Scholar
  61. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedCrossRefGoogle Scholar
  62. Suchi T, Lennert K, Tu LY, Kikuchi M, Sato E, Stansfeld AG, Feller AC (1987) Histopathology and immunohistochemistry of peripheral T-cell lymphomas: a proposal for their classification. J Clin Pathol 40:995–1015PubMedCrossRefGoogle Scholar
  63. Takihara Y, Champagne E, Griesser H et al. (1988) Sequence and organization of the human δ chain gene. Eur J Immunol 18:283–287PubMedCrossRefGoogle Scholar
  64. Tkachuk D, Griesser H, Feller AC, Lennert K, Mak TW (1988) Rearrangement of the T-cell locus in lymphoproliferative disorders. Blood 72:353–357PubMedGoogle Scholar
  65. Tonegawa S (1985) The molecules of the immune system. Sci Am 253:122–131PubMedCrossRefGoogle Scholar
  66. Toyonaga B, Mak TW (1987) Genes of the T-cell antigen receptor in normal and malignant T-cells. Ann Rev Immunol 5:585–620CrossRefGoogle Scholar
  67. Unanue ER (1976) Secretory function of mononuclear phagocytes. A review. Am J Pathol 83:396–417PubMedGoogle Scholar
  68. Unanue ER (1980) Cooperation between mononuclear phagocytes and lymphocytes in immunity. N Engl J Med 303:977–985PubMedCrossRefGoogle Scholar
  69. Waldmann TA (1987) The arrangement for immunoglobulin and T-cell receptor genes in human lymphoproliferative disorders. In: Dixon FJ (ed) Advances in immunology, vol 40. Academic, Orlando, pp 247–321CrossRefGoogle Scholar
  70. Wang C, Kelleher CA, Cheng GYM et al. (1988) Expression of the CSF-1 gene in the blast cells of acute myeloblastic leukemia: association with reduced growth capacity. J Cell Physiol 135:133–138PubMedCrossRefGoogle Scholar
  71. Warren MK, Ralph P (1986) Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol 137:2281–2285PubMedGoogle Scholar
  72. Weiss LM, Hu E, Wood GS, Moulds C, Cleary ML, Warnke R, Sklar J (1985) Clonal rearrangements of T-cell receptor genes in mycosis fungoides and dermatopathic lymphadenopathy. N Engl J Med 313:539–544PubMedCrossRefGoogle Scholar
  73. Weiss LM, Wood GS, Ellisen LW, Reynolds TC, Sklar J (1987) Clonal T-cell populations in pityriasis lichenoides et varioliformis acuta (Mucha-Habermann disease). Am J Pathol 126:417–421PubMedGoogle Scholar
  74. Weiss LM, Picker LJ, Grogan TM, Warnke RA, Sklar JA (1988) Absence of clonal beta and gamma T-cell receptor gene rearrangements in a subset of peripheral T-cell lymphomas. Am J Pathol 130:436–442PubMedGoogle Scholar
  75. Winoto A, Baltimore D (1989) Separate lineages of T-cells expressing the β and γ/δ receptors. Nature 338:430–432PubMedCrossRefGoogle Scholar
  76. Woolford J, McAuliffe A, Rohrschneider LR (1988) Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell 55:965–977PubMedCrossRefGoogle Scholar
  77. Xu DQ, Guilhot S, Galibert F (1985) Restriction fragment length polymorphism of the human c-fms gene. Proc Natl Acad Sci USA 82:2862–2865PubMedCrossRefGoogle Scholar
  78. Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Alecander J, Mak TW (1984) A human T-cell specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. R. Parwaresch
  • H. Kreipe
  • H. J. Radzun
  • H. Griesser

There are no affiliations available

Personalised recommendations