Anharmonic Free and Forced Oscillations

  • Erich W. Schmid
  • Gerhard Spitz
  • Wolfgang Lösch


An exactly harmonic potential seldom occurs in nature; a small anharmonicity is almost always present. In analytic calculations such perturbation terms present considerable difficulties. In numerical calculations on the computer, on the other hand, it makes scarcely any difference whether the potential is harmonic or anharmonic. In what follows we shall again consider the one-dimensional motion of a point mass with mass M = 1kg. Friction will be ignored. The potential of the restoring force has the form
$$V(x)\, = \,A\frac{{|x{|^{B + 1}}}}{{(B + 1)}}.$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    E. Isaacson, H.B. Keller: Analysis of Numerical Functions (John Wiley and Sons, Inc., New York 1966 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Erich W. Schmid
    • 1
  • Gerhard Spitz
    • 2
  • Wolfgang Lösch
    • 3
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenFed. Rep. of Germany
  2. 2.Siemens AGMünchen 70Fed. Rep. of Germany
  3. 3.FB PhysikUniversität EssenEssenFed. Rep. of Germany

Personalised recommendations