Advertisement

Weak Formal Theories of Arithmetic

  • Craig Smoryński
Part of the Universitext book series (UTX)

Abstract

There are different themes that run through different branches of mathematics. Arithmetic encoding— the simultaneously astounding breadth and limitations it engenders— has been a theme developed so far in this book. Another theme of logic is formalisation— the creation and study of formal language and logic. Such a theme is taken up in this chapter and ultimately wed to that of encoding and limitation.

Keywords

Function Symbol Atomic Formula Completeness Theorem Relation Symbol Finite Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reading List

§1

  1. 1.
    David Hilbert, “Mathematische Probleme”, Arch. f. Math. u. Phys. (3) 1 (1901), 44–63; reprinted in: David Hilbert, Gesammelte Abhandlungen III, Springer-Verlag, Berlin, 1935; English translation in: F. Browder, ed., Mathematical Developments Arising from Hilbert Problems, AMS, Providence, 1976.zbMATHGoogle Scholar
  2. 2.
    Constance Reid, Hilbert, Springer-Verlag, New York, 1970.CrossRefzbMATHGoogle Scholar
  3. 3.
    K.E. Rothschuh, “Emil Heinrich du Bois-Reymond”, Dictionary of Scientific Biography, Scribners, New York, 1971.Google Scholar
  4. 4.
    Vito Abrusci,“‘Proof’, ‘theory’, and ‘foundations’ in Hilbert’s mathematical work from 1885 to 1900”, in: M.L. Dalla Chiara, ed., Italian Studies in the Philosophy of Science, Reidel, Dordrecht, 1981.Google Scholar
  5. 5.
    Gregory Moore, Zermelo’s Axiom of Choice, Springer-Verlag, New York, 1982.CrossRefzbMATHGoogle Scholar
  6. 6.
    Hilary Putnam, “What is mathematical truth?”, in: H. Putnam, Philosophical Papers I; Mathematics, Matter and Method, Cambridge, 1975; reprinted in: T. Tymoczko, ed., New Directions in the Philosophy of Mathematics, Birkhäuser, Boston, 1986.Google Scholar

§§2–3

  1. 1.
    Jean Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving, Harper & Row, New York, 1986.zbMATHGoogle Scholar
  2. 2.
    Warren Goldfarb, “Logic in the twenties: the nature of the quantifier”, J. Symbolic Logic 44 (1979), 351–368.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas, Mathematical Logic, Springer-Verlag, New York, 1984.zbMATHGoogle Scholar

§4

  1. 1.
    M. Presburger, “Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt”, in: Comptes Rendus I Congrès des Mathématiciens des Pays Slaves, Warsaw, 1930.Google Scholar
  2. 2.
    Thoralf Skolem, “Über einige Satzfunktionen in der Arithmetik”, Skrifter Vitenskapsakademiet i Oslo, I, No 7 (1931), 1–28; reprinted in: Thoralf Skolem, Selected Works in Logic, Universitetsforlaget, Oslo, 1970.Google Scholar
  3. 3.
    David Hilbert and Paul Bernays, Grundlagen der Mathematik I, Springer-Verlag, Berlin, 1934. (Vid. pages 359–368, or 368–377 of the second edition (1970).)zbMATHGoogle Scholar
  4. 4.
    Herbert B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.zbMATHGoogle Scholar
  5. 5.
    Ann Yasuhara, Recursive Function Theory and Logic, Academic Press, New York, 1971.zbMATHGoogle Scholar
  6. 6.
    S. Ginsburg and E. Spanier, “Semigroups, Presburger formulas, and languages”, Pacific J. Math. 16 (1966), 285–296.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C. Smoryński, “Skolem’s solution to a problem of Frobenius”, Math. Intelligencer 3 (1981), 123– 132.CrossRefzbMATHGoogle Scholar
  8. 8.
    Abraham Robinson and Elias Zakon, “Elementary properties of ordered Abelian groups”, Transactions AMS 96 (1960), 222–236; reprinted in: H.J. Keisler, S. Körner, W.AJ. Luxemburg, and A.D. Young, eds., Selected Papers of Abraham Robinson I; Model Theory and Algebra, North-Holland, Amsterdam, 1979.CrossRefzbMATHMathSciNetGoogle Scholar

§5

  1. 1.
    Andrzej Mostowski, “On direct products of theories”, J. Symbolic Logic 17 (1952), 1–31; reprinted in: A. Mostowski, Foundational Studies; Selected Works II, North-Holland, Amsterdam, and PWN— Polish Scientific Publishers, Warsaw, 1979.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Patrick Cegielski, “Théorie élémentaire de la multiplication des entiers naturels”, in: C. Berline, K. McAloon, and J.-P. Ressayre, eds., Model Theory and Arithmetic, Springer-Verlag, New York, 1981.Google Scholar
  3. 3.
    Jeanne Ferrante and Charles W. Rackoff, The Computational Complexity of Logical Theories, Springer-Verlag, New York, 1979.zbMATHGoogle Scholar

§8

  1. 1.
    Alfred Tarski, Andrzej Mostowski, and Raphael Robinson, Undecidable Theories, North-Holland, Amsterdam, 1953.zbMATHGoogle Scholar
  2. 2.
    Yu. L. Ershov, I.A. Lavrov, A.D. Taimanov, and M.A. Taitslin, “Elementary theories”, (Russian), Uspekhi Matem. Nauk 20 4 (1965), 37–108; English translation: Russian Math. Surveys 20 4 (1965), 35–105.zbMATHGoogle Scholar
  3. 3.
    Edward Nelson, Predicative Arithmetic, Princeton, 1986.Google Scholar
  4. 4.
    Dirk Siefkes, Büchi’s Monadic Second-Order Successor Arithmetic, Springer-Verlag, Heidelberg, 1970.CrossRefzbMATHGoogle Scholar
  5. 5.
    D.J. Lewis, “Diophantine equations: p-adic methods”, in: W.J. LeVeque, ed., Studies in Number Theory, Prentice-Hall, Englewood Cliffs (N.J.), 1969.Google Scholar
  6. 6.
    Roland Fraïssé, Cours de Logique Mathématique II, Gautier-Villars, Paris, 1972; English translation: A Course in Mathematical Logic II, Reidel, Dordrecht, 1974.Google Scholar
  7. 7.
    Julia Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic 14 (1949), 98–114.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Craig Smoryński
    • 1
  1. 1.WestmontUSA

Personalised recommendations