Advertisement

Arithmetic Encoding

  • Craig Smoryński
Chapter
Part of the Universitext book series (UTX)

Abstract

The rare graduate student or advanced undergraduate who hasn’t haunted the library and leafed through many an incomprehensible mathematical monograph and has, thus, not yet heard of (say) algebraic geometry or orthogonal polynomials or the unsolvability of Hilbert’s tenth problem might well wonder why a book written for graduate students and advanced undergraduates should begin with something so simple as polynomials. Well, polynomials have had a long history and they form a recurring theme throughout all of mathematics.

Keywords

Recursive Function Chinese Remainder Theorem Pairing Function Register Machine Polynomial Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reading List

§1

  1. 1.
    I.G. Bashmakova, Diophant und diophantische Gleichungen, UTB-Birkhäuser, Basel, 1974.zbMATHGoogle Scholar
  2. 2.
    G Boole, A Treatise on the Calculus of Finite Differences, Dover, New York, 1960.zbMATHGoogle Scholar
  3. 3.
    H Eves, An Introduction to the History of Mathematics, 6th ed., Saunders, Philadelphia, 1990.zbMATHGoogle Scholar
  4. 4.
    Anthony Hyman, Charles Babbage; Pioneer of the Computer, Princeton, 1982.Google Scholar
  5. 5.
    P and E Morrison, Charles Babbage and His Calculating Engines, Dover, New York, 1961.zbMATHGoogle Scholar

§2

  1. 1.
    David Eugene Smith, A Source Book in Mathematics, I, Dover, New York, 1959. (Cf. in particular the entry, “Bernoulli on ‘Bernoulli Numbers’”.)Google Scholar
  2. 2.
    Dirk J. Struik, A Source Book in Mathematics, 1200–1800, Harvard, Cambridge (Mass.), 1969. (Cf. in particular the entry “Sequences and series” by Jakob Bernoulli.)zbMATHGoogle Scholar
  3. 3.
    R. Calinger, Classics of Mathematics, Moore Pub. Co., Oak Park (Ill.), 1982.Google Scholar
  4. 4.
    John Fauvel and Jeremy Gray, The History of Mathematics; A Reader, Macmillan Education, London, 1987.Google Scholar

§3

  1. 1.
    Georg Cantor, Contributions to the Founding of the Theory of Transfinite Numbers, Dover, New York, 1955.Google Scholar
  2. 2.
    Richard Dedekind, “The nature and meaning of numbers”, in: Richard Dedekind, Essays in the Theory of Numbers, Dover, New York, 1963.Google Scholar
  3. 3.
    Galileo Galilei, Dialogues Concerning the Two New Sciences, Dover, New York, 1954.Google Scholar
  4. 4.
    Jean van Heijenoort, From Frege to Gödel; A Source Book in Mathematical Logic, 1879 – 1931, Harvard, Cambridge (Mass.), 1967.zbMATHGoogle Scholar
  5. 5.
    Herbert Meschkowski, Das Problem des Unendlichen, Deutscher Taschenbuch Verlag, München, 1974.zbMATHGoogle Scholar

§5

  1. 1.
    Serge Lang, Algebra, Addison-Wesley, Reading (Mass.), 1965.zbMATHGoogle Scholar
  2. 2.
    Serge Lang, Complex Analysis, Addison-Wesley, Reading (Mass.), 1977.zbMATHGoogle Scholar
  3. 3.
    John S. Lew and Arnold L. Rosenberg, “Polynomial indexing of integer lattice points, I, II”, J. Number Theory 10 (1978), 192 – 214, 215 – 243.CrossRefzbMATHMathSciNetGoogle Scholar

§6

  1. 1.
    Leonard Eugene Dickson, History of the Theory of Numbers, II, Chelsea, New York, 1952.Google Scholar
  2. 2.
    Ho Peng-Yoke, “Ch’in Chiu-shao”, Dictionary of Scientific Biography, Scribner’s, New York, 1971.Google Scholar

§8

  1. 1.
    Richard Dedekind, “The nature and meaning of numbers”, in: Richard Dedekind, Essays in the Theory of Numbers, Dover, New York, 1963.Google Scholar
  2. 2.
    Kurt Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I”, Monatsheft f. Mathematik u. Physik 38 (1931), 173 – 198; English translations in: Martin Davis, ed., The Undecidable, Raven Press, Hewlett (NY), 1965; Jean van Heijenoort, ed., From Frege to Gödel; A Source Book in Mathematical Logic, 1879 – 1931, Harvard, Cambridge (Mass.), 1967; and Solomon Feferman et al., eds., Kurt Gödel; Collected Works, I, Oxford, 1986.CrossRefGoogle Scholar
  3. 3.
    Thoralf Skolem, “Begründung der elementären Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich”, most accessible in: Thoralf Skolem, Selected Works in Logic, Universitetsforlaget, Oslo, 1970; English translation in: Jean van Heijenoort, ed., From Frege to Gödel; A Source Book in Mathematical Logic, 1879 – 1931, Harvard, Cambridge (Mass.), 1967.Google Scholar
  4. 4.
    Rosza Péter, Recursive Functions, Academic Press, New York, 1967.zbMATHGoogle Scholar
  5. 5.
    H.E. Rose, Subrecursion; Functions and Hierarchies, Oxford, 1984.Google Scholar
  6. 6.
    K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1968.CrossRefzbMATHGoogle Scholar

§9

  1. 1.
    Wilhelm Ackermann, “Zum Hilbertschen Aufbau der reelen Zahlen”, Math. Annalen 99 (1928), 118 – 133; English translation in: Jean van Heijenoort, ed., From Frege to Gödel; A Source Book in Mathematical Logic, 18791931, Harvard, Cambridge (Mass.), 1967.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    David Hilbert, “Über das Unendliche”, Math. Annalen 95 (1926), 161 – 190; English translation in: Jean van Heijenoort, ed., From Frege to Gödel; A Source Book in Mathematical Logic, 1879 – 1931, Harvard, Cambridge (Mass.), 1967.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Rosza Péter, “Konstruktion nichtrekursiver Funktionen”, Math. Annalen 111 (1935), 42 – 60.CrossRefGoogle Scholar
  4. 4.
    Gabriel Sudan, “Sur le nombre transfini ωω”, Bulletin mathematique de la Société roumaine des sciences 30 (1927), 11 – 30; cf.: Christian Calude and Solomon Marcus, “The first example of a recursive function which is not primitive recursive”, Historia Mathematica 6 (1979), 380 – 384.zbMATHGoogle Scholar
  5. 5.
    Ronald Graham, Bruce Rothschild, and Joel Spencer, Ramsey Theory, J. Wiley and Sons, New York, 1980.zbMATHGoogle Scholar
  6. 6.
    A.Y. Khinchin, Three Pearls of Number Theory, Graylock Press, Baltimore, 1952.zbMATHGoogle Scholar
  7. 7.
    Steven F. Bellenot, “The Banach space T and the fast growing hierarchy from logic”, to appear.Google Scholar

§10

  1. 1.
    Kurt Gödel, “on undecidable propositions of formal mathematical systems”, in: Martin Davis, ed., The Undecidable, Raven Press, Hewlett (NY), 1965; and Solomon Feferman, et al., eds., Kurt Gödel; Collected Works, I, Oxford, 1986.Google Scholar
  2. 2.
    Thoralf Skolem, “Über die Zurückführbarkeit einiger durch Rekursionen definierter Relationen auf ‘Arithmetische’”, most accessible in: Thoralf Skolem, Selected Works in Logic, Universitetsforlaget, Oslo, 1970.Google Scholar
  3. 3.
    Raymond Smullyan, Theory of Formal Systems, Princeton, 1961.Google Scholar

§11

  1. 1.
    Eugene Wigner, “The unreasonable effectiveness of mathematics in the natural sciences”, Commun. in Pure and Applied Math. 13 (1960), 1 – 14; reprinted in: Douglas Campbell and John Higgins, eds., Mathematics; People, Problems, Results, III, Wadsworth, Belmont (Cal.), 1984.CrossRefzbMATHGoogle Scholar
  2. 2.
    Alan M. Turing, “On computable numbers with an application to the Entscheidungsproblem”, Proc. London Math. Soc., ser. 2, vol. 42 (1936 – 37), 230 – 265; reprinted in: Martin Davis, ed., The Undecidable, Raven Press, Hewlett (NY), 1965.MathSciNetGoogle Scholar
  3. 3.
    Stephen Kleene, “Origins of recursive function theory”, Annals of the History of Computing 3 (1981), 52 – 67.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Heinz-Dieter Ebbinghaus, Jörg Rum, and Wolfgang Thomas, Mathematical Logic, Springer-Verlag, New York, 1984. (Chapter X)zbMATHGoogle Scholar
  5. 5.
    John Bell and Moshe Machover, A Course in Mathematical Logic, North-Holland, Amsterdam, 1977. (Chapter 6)zbMATHGoogle Scholar

§12

  1. 1.
    Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.zbMATHGoogle Scholar
  2. 2.
    Michael Burke and Ron Genise, LOGO and Models of Computation, Addison-Wesley, Menlo Park (Cal.), 1987.Google Scholar
  3. 3.
    William F. Dowling, “There are no safe virus tests”, Amer. Math. Monthly 96 (1989), 835 – 836.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Craig Smoryński
    • 1
  1. 1.WestmontUSA

Personalised recommendations