Skip to main content

Drug Discovery: A Biochemist’s Approach

  • Chapter
Chemotherapy of Fungal Diseases

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 96))

Abstract

A complete exhaustive knowledge of all the different chemo-receptors of a certain definite parasite is what I should like to characterise as the therapeutic physiology of the parasite cell and this is the sine quâ non of any successful chemotherapeutic treatment. (Paul Ehrlich 1913)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer DB (1976) Effect of the lipid composition of Mycoplasma mycoides subspecies capri and phosphatidyl choline vesicles upon the action of polyene antibiotics. Biochim Biophys Acta 436: 68–78

    Article  PubMed  CAS  Google Scholar 

  • Bacchi CJ (1981) Content, synthesis, and function of polyamines in trypanosomatids: relationship to chemotherapy. J Protozool 28: 20–27

    PubMed  CAS  Google Scholar 

  • Barbet J, Machy P, Leserman LD (1981) Monoclonal antibody covalently coupled to liposomes: specific targetting to cells. J Supramol Struct Cell Biochem 16: 243–258

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Bee KJ, Lane AC, Turner RW (1986) The mode of antifungal action of tolnaftate. J Med Vet Mycol 24: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Barug D, Samson RA, Kerkenaar A (1983) Microscopic studies of Candida albicans and Torulopsis glabrata after in vitro treatment with bifonazole. Arzneim Forsch 33: 528–537

    CAS  Google Scholar 

  • Becker JM, Covert NL, Shenbagamurthi P, Steinfeld AS, Naider F (1983) Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother 23: 926–929

    PubMed  CAS  Google Scholar 

  • Becker JM, Marcus S, Tullock J, Miller D, Kramer E, Khare RK, Naider F (1988) Use of the chitin synthesis inhibitor nikkomycin to treat disseminated candidosis in mice. J Infect Dis 117: 212–214

    Article  Google Scholar 

  • Berg D, Büchel K-H, Kramer W, Plempel M, Scheinpflug H (1988) Mechanistic studies as a tool for the development of new compounds. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors. Pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, pp 169–184

    Google Scholar 

  • Bloch KE (1983) Sterol structure and membrane function. Crit Rev Biochem 14: 47–92

    Article  CAS  Google Scholar 

  • Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864: 257–302

    PubMed  CAS  Google Scholar 

  • Boiron P, Drouhet E, Dupont B, Improvisi L (1987) Entry of ketoconazole into Candida albicans. Antimicrob Agents Chemother 31: 244–248

    PubMed  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells and plant cells. Proc Natl Acad Sci USA 85: 7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Boyle SM, Sriranganathan N, Cordes D (1988) Susceptibility of Microsporum and Trichophyton species to suicide inhibitors of polyamine biosynthesis. J Med Vet Mycol 26: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Brasseur R, Vandenbosch C, Vanden Bossche H, Ruysschaert JM (1983) Mode of insertion of miconazole, ketoconazole and deacylated ketoconazole in lipid bilayers a conformational analysis. Biochem Pharmacol 32: 2175–2180

    Article  PubMed  CAS  Google Scholar 

  • Brian PW, Curtis PW, Fleming HG (1946) A substance causing abnormal development of fungal hyphae produced by Penicillium griseo-fulvin Dierckx. Trans Br Mycol Soc 32: 30–33

    Article  Google Scholar 

  • Bulawa CE, Sleter M, Cabib E, Au-Young J, Sburlati A, Adair WL, Robins PW (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46: 213–225

    Article  PubMed  CAS  Google Scholar 

  • Burland TG, Gull K (1984) Molecular and cellular aspects of the interaction of benzimidazole fungicides with tubulin and microtubules. In: Trinci APJ, Ryley JF Drug Discovery: A Biochemist’s Approach (eds) Mode of action of antifungal agents. Cambridge University Press, Cambridge, pp 299–230

    Google Scholar 

  • Cabib E, Kang MS, Bowers B, Elango N, Mattia E, Slater ML, Au Young J (1984) Chitin synthesis in yeast, a vectorial process in the plasma membrane. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 91–100

    Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci. 5: 370–375

    PubMed  CAS  Google Scholar 

  • Cassone A (1986a) Chitin synthesis, dimorphism and virulence in the pathogenic fungus Candida albicans. In: Mazzarelli A, Jeanimur C, Gooday GW (eds) Chitin in nature and technology. Plenum, New York, pp 71–78

    Chapter  Google Scholar 

  • Cassone A (1986b) Cell wall of pathogenic yeasts and implications for antimycotic therapy. Drugs Expt Clin Res 12: 635–648

    CAS  Google Scholar 

  • Cassone A, Mason RE, Kerridge D (1981) Lysis of growing yeast form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19: 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Cheron M, Cybulska B, Mazerski J, Grzybowska J, Czerwinski A, Borowski E (1988) Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol 37: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Chiew YY, Shepherd MG, Sullivan PA (1980) Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol 125: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Chmara H, Andruszkiewicz R, Borowski E (1986) Inactivation of glucosamine-6-phosphate synthetase from Salmonella typhimurium LT2 by fumaroyl diaminopropanoic acid derivatives, a novel group of glutamine analogs. Biochim Biophys Acta 870: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Cope JE (1980a) The porosity of the cell wall of Candida albicans. J. Gen Microbiol 119: 253–255

    PubMed  CAS  Google Scholar 

  • Cope JE (1980b) Mode of action of miconazole on Candida albicans: effect on growth viability and K release. J Gen Microbiol 119: 245–251

    PubMed  CAS  Google Scholar 

  • Crosse R, McWilliam R, Rhodes A (1964) Some relations between chemical structure and antifungal effects of griseofulvin analogues. J Gen Microbiol 34: 51–65

    PubMed  CAS  Google Scholar 

  • Davies RR (1980) Griseofulvin. In: Speller DCE (ed) Antifungal Chemotherapy. Wiley, Chichester, pp 149–182

    Google Scholar 

  • Dahmen H, Hock HC, Staub T (1988) Differential effects of sterol inhibitors on growth, cell membrane permeability and ultrastructure of two target fungi. Phytopathology 78: 1033–1042

    Article  CAS  Google Scholar 

  • De Clercq E (1985) Antiviral agents. Symp Soc Gen Microbiol 38: 155–184

    Google Scholar 

  • Dekker J (1984) Development of resistance to antifungal agents. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal drugs. Cambridge University Press, Cambridge, pp 89–111

    Google Scholar 

  • Dekker J (1985) The development of resistance to fungicides. In: Hutson DH, Roberts TR (eds) Progress in pesticide biochemistry and toxicology. Wiley, Chichester, 4: 165–218

    Google Scholar 

  • De Waard MA, Fuchs A (1982) Resistance to ergosterol biosynthesis inhibitors. II Genetic and physiological aspects. In: Dekker J, Georgopoulos SG (eds) Fungicide resistance and crop protection. Pudoc Centre for Agricultural Publishing and Documentation, Wageningen, pp 87–100

    Google Scholar 

  • Dimitriadis G, Hatziagelaki E, Ladias S, Linos A, Hillebrand I, Raptis S (1988) Effects of prolonged administration of two new alphα-glucosidase inhibitors on blood glucose control, insulin requirements and breath hydrogen excretion in patients with insulin-dependent diabetes mellitus. Eur J Clin Invest 18: 33–38

    Article  PubMed  CAS  Google Scholar 

  • Di Vito M, Podo F, Torosantucci A, Carpinelli G, Whelan WL, Kerridge D, Cassone A (1986) A 19F nuclear magnetic resonance study of uptake and metabolism of 5-fluorocytosine in susceptible and resistant strains of Candida albicans. Antimicrob Agents Chemother 23: 303–308

    Google Scholar 

  • Dufour J-P, Boutry M, Goffeau A (1980) Plasma membrane ATPase of yeast. Comparative inhibition studies of the purified and membrane bound enzymes. J Biol Chem 255: 5735–5741

    PubMed  CAS  Google Scholar 

  • Dupont B, Drouhet E (1988) The treatment of aspergillosis with azole derivatives. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York, pp 243–251

    Google Scholar 

  • Duran A, Varona R, Perez P, Garciα-Acha I (1984) Biosynthesis of fungal wall ß-glucan and its inhibition by antifungal agents. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 297–306

    Google Scholar 

  • Eddy AA (1982) Mechanisms of solute transport in selected eukaryotic microorganisms. Adv Microb Physiol 23: 2–78

    Google Scholar 

  • Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML (1988) Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334: 519–522

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1913) Address on pathology in chemotherapeutics: scientific principles, methods and results. Lancet II: 445–451

    Google Scholar 

  • Elbein AD (1981) The tunicamycins-useful tools for studies on glycoproteins. TIBS 6: 219–221

    CAS  Google Scholar 

  • El Kouni MH, Cha S (1987) Metabolism of adenosine analogues by Schistosoma mansoni and the effect of nucleoside transport inhibitors. Biochem Pharmacol 36: 1099–1106

    Article  PubMed  Google Scholar 

  • El Kouni MH, Diop D, Cha S (1983) Combination therapy of schistosomiasis by tubercidin and nitrobenzylthioinosine 5-monophosphate. Proc Natl Acad Sci USA 80: 6667–6670

    Article  PubMed  Google Scholar 

  • El Kouni MH, Knopf PM, Cha A (1985) Combination therapy of Schistosoma japonicum by tubercidin and nitrobenzylthioinosine 5’-monophosphate. Biochem Pharmacol 34: 3921–3923

    Article  PubMed  Google Scholar 

  • Ellul H, Beezer AE, Brain APR, Miles RJ, Sivayogan SR (1985) The effect of chemical modification of Saccharomyces cerevisiae on electrophoretic mobility, cell wall structure and amphotericin B uptake. Biochim Biophys Acta 845: 151–157

    Article  PubMed  CAS  Google Scholar 

  • El-Nakeeb MA, Lampen JO (1965) Uptake of 3H-griseofulvin by microorganisms and its correlation with sensitivity to griseofulvin. J Gen Microbiol 39: 285–293

    PubMed  CAS  Google Scholar 

  • Emmer G, Ryder NS, Grassberger MA (1985) Synthesis of new polyoxin derivatives and their activity against chitin synthase from Candida albicans. J Med Chem 28: 278–281

    Article  PubMed  CAS  Google Scholar 

  • Farkas V (1979) Biosynthesis of cell walls of fungi. Microbiol Rev 43: 117–144

    PubMed  CAS  Google Scholar 

  • Fink W, Liefland M, Mendgen K (1988) Chitinases and ß-l-3-glucanases in the apoplastic compartment of oat leaves (Avena sativa). Plant Physiol 88: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Fleet G (1985) Composition and structure of the yeast cell wall. In: McGinnis MR (ed) Current topics in medical mycology. Springer, Berlin Heidelberg New York, 1: 24–56

    Google Scholar 

  • Forêt M, Schmidt R, Reichert W (1978) On the mechanism of substrate binding to the purine-transport system of Saccharomyces cerevisiae. Eur J Biochem 82: 33–43

    Article  PubMed  Google Scholar 

  • Fuhrmann U, Bause E, Ploegh M (1985) Inhibitors of oligosaccharide processing. Biochim Biophys Acta 825: 95–110

    PubMed  CAS  Google Scholar 

  • Furter R, Rast DM (1985) A comparison of the chitin synthase EC 2.4.1.16. Inhibitory and antifungal efficacy of nucleoside-peptide antibiotics: structure activity relationships. FEMS Lett 28: 205–212

    Article  CAS  Google Scholar 

  • Gale EF (1986) Nature and development of phenotypic resistance to amphotericin B in Candida albicans. Adv Microbiol Physiol 27: 278–320

    Google Scholar 

  • Gale EF, Johnson AM, Kerridge D, Wayman FJ (1980) Phenotypic resistance to miconazole and amphotericin B in Candida albicans. J Gen Microbiol 117: 525–528

    Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis of antibiotic action, 2nd edn Wiley, New York

    Google Scholar 

  • Gooday GW (1977) Biosynthesis of the fungal wall. Mechanisms and implications. J. Gen Microbiol 99: 1–11

    PubMed  CAS  Google Scholar 

  • Gooday GW, Brydon LJ, Chappel LH (1988) Chitinase in Onchocerca and its inhibition by alllosamidin. Trop Med Parasitol 39: 76

    Google Scholar 

  • Gordee RS, Zeckner DJ, Ellis LF, Thakkar AL, Howard LC (1984) In vitro and in vivo anti-Candida activity of LY121019. J Antibiot 37: 1054–1064

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1988a) The multidrug transporter, a double edged sword. J Biol Chem 263: 12163–12166

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1988b) Resistance to multiple chemotherapeutic agents in human cancer cells. TIPS 9: 54–58

    PubMed  CAS  Google Scholar 

  • Graybill JR (1988) A history of the treatment of aspergillosis. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York, pp 229–242

    Google Scholar 

  • Graybill JR, Craven PC, Taylor RL, Williams DM, Magee WE (1982) Treatment of murine cryptococcosis with liposomes associated with amphotericin B. J Infect Dis 145: 748–752

    Article  PubMed  CAS  Google Scholar 

  • Graybill JR, Stevens D, Galgiani J, Dismukes W (1986) Recent developments in the treatment of fungal meningitis. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluations of antifungal agents. Elsevier, Amsterdam, pp 259–270

    Google Scholar 

  • Guentzel MN, Cole GT, Pope LM (1985) Animal models for candidiasis. In McGinnis MR (ed) Current topics in medical mycology. Springer, Berlin Heidelberg New York, 1: 57–116

    Google Scholar 

  • Hall GS, Myles C, Pratt KJ, Washington JA (1988) Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis. Antimicrob Agents Chemother 32: 1331–1335

    Google Scholar 

  • Harold RL, Harold FM (1986) Ionophores and cytochalasin modulate branching in Achlya bisexualis. J Gen Microbiol 132: 213–219

    PubMed  CAS  Google Scholar 

  • Hilenski LL, Naider F, Becker JM (1986) Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chi tin in dimorphic forms of Candida albicans. J Gen Microbiol 132: 1441–1451

    PubMed  CAS  Google Scholar 

  • Hitchcock CA, Barrett-Bee KJ, Russell NJ (1986) The lipid composition of azole sensitive and azole resistant strains of Candida albicans. J Gen Microbiol 132: 2421–2431

    PubMed  CAS  Google Scholar 

  • Iwata K, Yamaguchi H, Hiratani T (1973) Mode of action of clotrimazole. Sabouraudia 11: 158–166

    Article  PubMed  CAS  Google Scholar 

  • Janssen PAJ, Vanden Bossche H (1987) Mode of action of cytochrome P-450 mono-oxygenase inhibitors. Focus on azole derivatives. Arch Pharm Chem Sci Ed 15: 23–40

    CAS  Google Scholar 

  • Kenig M, Abraham EP (1976) Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol 94: 37–46

    PubMed  CAS  Google Scholar 

  • Kerkenaar A (1987) The mode of action of dimethylmorphilines. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. JR Prous, Barcelona, pp 523–542

    Google Scholar 

  • Kerridge D (1986) Mode of action of clinically important antifungal drugs. Adv Microbiol Physiol 27: 1–72

    Article  CAS  Google Scholar 

  • Kerridge D (1988) Polyene macrolide antibiotics. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York, pp 147–160

    Google Scholar 

  • Kerridge D, Nicholas RO, Wayman FJ (1987) Resistance to clinically important anti-mycotic drügs in Candida spp. Ann 1st Supr Sanita 23: 827–834

    CAS  Google Scholar 

  • Kobayashi GS, Medoff G, Maresca B, Sacco M, Kumar BV (1985) Studies on the phase transition in the dimorphic pathogen Histoplasma capsulatum. In: Szaniszlo PJ (ed) Fungal dimorphism, with emphasis on fungi pathogenic for humans. Plenum, New York, pp 69–91

    Google Scholar 

  • Koga D, Isogai A, Sakuda S, Matsumoato S, Suzuki A, Kimura S, Ide A (1987) Specific inhibition of Bombyx mori chitinase by allosamidin. Agric Biol Chem 51: 471–476

    Article  CAS  Google Scholar 

  • Koh TY, Marriott MS, Taylor J, Gale EF (1977) Growth characteristics and polyene sensitivity of a fatty acid auxotroph of Candida albicans. J Gen Microbiol 102: 105–110

    PubMed  CAS  Google Scholar 

  • Kombrink E, Schroder M, Hahlbrock K (1988) Several ‘pathogenesis-related’ proteins in potato are 1,3-ß-glucanases and chitinases. Proc Natl Acad Sei USA 85: 782–786

    Article  CAS  Google Scholar 

  • Langcake P, Kuhn PJ, Wade M (1983) The mode of action of systemic fungicides. In: Hutson DH, Roberts TR (eds) Progress in pesticide biochemistry and toxicology. Wiley, Chichester, 3: 1–109

    Google Scholar 

  • Lichliter WD, Naider F, Becker JM (1976) Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans. Antimicrob Agents Chemother 10: 483–490

    PubMed  CAS  Google Scholar 

  • Lombardi G, Padhye AA, Ajello L (1988) In vitro conversion of African isolates of Blastomyces dermatitidis to their yeast form. Mycoses 31: 447–450

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Berestein G, Fainstein V, Hopfer R, Mehta K, Sullivan MP, Keating M, Rosenblum MG, Mehta R, Luna M, Hersh E, Reuben J, Juliano RL, Bodey GP (1985) Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 151: 704–710

    Article  PubMed  CAS  Google Scholar 

  • Lürssen K (1988) Triazole plant growth regulators: effects and mode of action. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors. Pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, pp 305–331

    Google Scholar 

  • Mamont PS, Duchesne M-C, Grove J, Bey P (1978) Antiproliferative properties of DL-α-difluoromethylornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochim Biophys Res Commun 81: 58–66

    Article  CAS  Google Scholar 

  • Marichal P, Gorrens J, Vanden Bossche H (1985) The action of itraconazole and ketoconazole on growth and sterol synthesis in Aspergillus fumigatus and Aspergillus niger. J Med Vet My col 23: 13–21

    Article  CAS  Google Scholar 

  • Mason JI, Carr BR, Murray BA (1987) Imidazole antimycotics: selective inhibitors of steroid aromatization and progesterone hydroxylation. Steroids 50: 180–189

    Article  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinases and ß-l-3-glucanase. Plant Physiol 88: 936–942

    Article  PubMed  CAS  Google Scholar 

  • McCann PP, Bacchi CJ, Hanson CJ, Cain GD, Nathan HC, Hutner SH, Sjoerdsma A (1981) Effect on parasitic protozoa of α-difluromethylornithine, an inhibitor of ornithine decarboxylase. In: Caldara CM, Zappia V, Bachrach U (eds) Advances in polyamine research. Raven, New York, 3: 97–110

    Google Scholar 

  • McCann PP, Bacchi CJ, Clarkson AB, Bey P, Sjoerdsma A, Schecter PJ, Walzer PD, Barlow JLR (1986) Inhibition of polyamine synthesis by α-difluoromethylornithine in African trypanosomes and Pneumocystis carinii as a basis of chemotherapy: biochemical and clinical aspects. Am J Trop Med Hyg 35: 1153–1156

    PubMed  CAS  Google Scholar 

  • Medoff G (1988) The mechanism of action of amphotericin B. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York, pp 161–164

    Google Scholar 

  • Mercer EI (1988) The mode of action of morpholines. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors. Pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, pp 120–150

    Google Scholar 

  • Morin RB, Gorman M (eds) (1982) Chemistry and biology of ß-lactam antibiotics. Academic, New York

    Google Scholar 

  • Müller H, Furter R, Zahner H, Rast DM (1981) Metabolic products of microorganisms Inhibition of chitosomal chitin synthetase and growth of Mucor rouxii by nikkomycin Z, nikkomycin X and polyoxin A; a comparison. Arch Microbiol 130: 195–197

    Article  Google Scholar 

  • Müller J, Scheidecker I (1988) Immunoelectronmicroscopic studies on the influence of an echinocandin B analog on the cell wall antigenicity of Candida albicans. Proc Xth Congress of the Int Soc Hum An Mycol, p 152

    Google Scholar 

  • Nes WR, Dhanuka IC (1988) Inhibition of sterol synthesis by Δ5-sterol in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450. J Biol Chem 263: 11844–11850

    PubMed  CAS  Google Scholar 

  • New RRC, Chance ML, Heath S (1981) Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. J Antimicrob Chemother 8: 371–382

    Article  PubMed  CAS  Google Scholar 

  • Nombela C, Molina M, Cenamor R, Sanchez M (1988) Yeast P-glucanases: a complex sytem of secreted enzymes. Microbiol Sci 5: 328–332

    PubMed  CAS  Google Scholar 

  • Notario V (1982) (3-glucanases from Candida albicans: purification characterisation and nature of their attachment to cell wall components. J Gen Microbiol 128: 747–759

    PubMed  CAS  Google Scholar 

  • Notario V, Kawai H, Cabib E (1982) Interaction between yeast p (1-3) glucan synthetase and activating phosphorylated compounds. A kinetic study. J Biol Chem 257: 1902–1905

    PubMed  CAS  Google Scholar 

  • Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Odds FC (1986) Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 12: 45–93

    Article  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn Bailliere Tindall, London Orlean PAB (1982) (1,3)-ß-D-Glucan synthase from budding and filamentous cultures of the dimorphic fungus Candida albicans. Eur J Biochem 127: 397–403

    Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn Bailliere Tindall, London Orlean PAB (1982) (1,3)-ß-D-Glucan synthase from budding and filamentous cultures of the dimorphic fungus Candida albicans. Eur J Biochem 127: 397–403

    Google Scholar 

  • Orlean PAB (1987) Two chitin synthases in Saccharomyces cerevisiae. J Biol Chem 262: 5732–5739

    PubMed  CAS  Google Scholar 

  • Palacios J, Serrano R (1978) Proton permeability induced by polyene antibiotics. A plausible mechanism for their inhibition of maltose fermentation in yeast. FEBS Lett 91: 198–201

    Article  PubMed  CAS  Google Scholar 

  • Parodi A J (1981) Biosynthetic mechanisms for cell envelope polysaccharides. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics and ultrastructure. CRC Press, Boca Raton, 11: 47–64

    Google Scholar 

  • Patino MM, Burgos LC, Restrepo A (1984) Effect of temperature on the mycelium to yeast transformation of Paracoccidioides brasiliensis. J Med Vet My col 22: 509–511

    Article  CAS  Google Scholar 

  • Petranyi G, Ryder NS, Stiitz A (1984) Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224: 1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Pfaller MA, Gerarden T, Riley J (1987) Growth inhibition of pathogenic yeast isolates by adifluoromethylornithine: an inhibitor of ornithine decarboxylase. Myco-pathologia 98: 3–8

    CAS  Google Scholar 

  • Pfaller MA, Riley J, Gerarden T (1988) Polyamine depletion and growth inhibition in Candida albicans and Candida tropicalis by α-difluormethylornithine and cyclohexylamine. J Med Vet Mycol 26: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Polak Α-M (1988) Combination therapy with antifungal drugs. Mycoses 31 (Suppl 2): 45–53

    PubMed  Google Scholar 

  • Polak Α-M, Grenson M (1973) Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans. Eur J Biochem 32: 276–282

    Article  PubMed  CAS  Google Scholar 

  • Portillo F, Gancedo C (1984) Mode of action of miconazole on yeasts: inhibition of the mitochondrial ATPase. Eur J Biochem 143: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Rajam MV, Weistein LH, Galston AW (1985) Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc Natl Acad Sci USA 82: 6874–6878

    Article  PubMed  CAS  Google Scholar 

  • Rast DM, Barfnicki-Garcia S (1981) Effects of amphotericin B, nystatin and other polyene antibiotics on chitin synthase. Proc Natl Acad Sci USA 78: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Reynolds PE (1985) Inhibitors of bacterial cell wall synthesis. Symp Soc Gen Microbiol 38: 13–40

    CAS  Google Scholar 

  • Ringrose PS (1985) Warhead delivery and suicide substrates as concepts in anti-microbial drug design. Symp Soc Gen Microbiol 38: 219–266

    CAS  Google Scholar 

  • Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 837: 336–343

    PubMed  CAS  Google Scholar 

  • Rosenfeld A (1988) Some of a body’s crucial functions are only skin deep. Smithsonian (May): 159–180

    Google Scholar 

  • Ryder NS (1984) Selective inhibition of squaleiie epoxidation by allylamine anti-mycotic agents. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 313–321

    Google Scholar 

  • Ryder NS (1985) Specific inhibition of fungal sterol biosynthesis by SF-86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother 17: 252–256

    Google Scholar 

  • Ryder NS, Dupont MC (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds. Biochem J 230: 765–770

    PubMed  CAS  Google Scholar 

  • Ryder NS, Dupont MC, Frank I (1986) Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother 29: 858–860

    PubMed  CAS  Google Scholar 

  • Ryley JF, Wilson RG, Gravestock MB, Poyser JP (1981) Experimental approaches to antifungal chemotherapy. Adv Pharmacol Chemother 18: 49–176

    Article  PubMed  CAS  Google Scholar 

  • Ryley JF, Wilson RG, Barrett-Bee KJ (1984) Azole resistance in Candida albicans. Sabouraudia: J Med Vet Mycol 22: 53–63

    Article  CAS  Google Scholar 

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A, Koseki K (1986) The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron Lett 27: 2475–2478

    Article  CAS  Google Scholar 

  • San-Blas F, San-Blas G (1985) Paracoccidioides brasiliensis. In: Szaniszlo PJ (ed) Fungal dimorphism with emphasis on fungi pathogenic for humans. Plenum, New York, pp 93–120

    Google Scholar 

  • San-Blas G (1985) Paracoccidioides brasiliensis: cell wall glucans, pathogenicity and dimorphism. In: McGinnis MR (ed) Current topics in medical mycology. Springer, New York, 1:235–257

    Google Scholar 

  • San-Blas G, San-Blas F (1983) Molecular aspects of fungal dimorphism. CRC Crit Rev Microbiol 11: 101–127

    Article  Google Scholar 

  • Santen RJ, Vanden Bossche H, Symoens J, Brugmans J, DeCoster R (1983) Site of action of low dose ketoconazole on androgen biosynthesis in men. J Clin Endo¬crinol Metab 57: 732–736

    Article  CAS  Google Scholar 

  • Sawistowskα-Schroder ET, Kerridge D, Perry H (1984) Echinocandin inhibition of 1,3-p-D-glucan synthase from Candida albicans. FEBS Lett 173: 134–138

    Article  Google Scholar 

  • Sburlati A, Cabib E (1986) Chitin synthase 2, a presumptive participant in septum formation in S. cerevisiae. J Biol Chem 261: 15147–15152

    PubMed  CAS  Google Scholar 

  • Schaffner CP (1987) Amphotericin B derivatives. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. JR Prous, Barcelona, pp 595–618

    Google Scholar 

  • Schekman R (1982) The secretory pathway in yeast. TIBS 7: 243–246

    CAS  Google Scholar 

  • Schekman R (1985) Protein localization and membrane traffic in yeast. Ann Rev Cell Biol 1: 115–143

    Article  PubMed  CAS  Google Scholar 

  • Scholer HJ (1980) Flucytosine. In: Speller DCE (ed) Antifungal chemotherapy. Wiley, Chichester, pp 35–106

    Google Scholar 

  • Shematek EM, Bratz JA, Cabib E (1980) Biosynthesis of the yeast cell wall. I Preparation and properties of ß-(l-3) glucan synthetase. J Biol Chem 255: 888–894

    PubMed  CAS  Google Scholar 

  • Shepherd MG (1987) Cell envelope of Candida albicans. CRC Crit Rev Microbiol 15: 7–26

    Article  CAS  Google Scholar 

  • Shepherd MG, Suratti R, Gopal PK, Sullivan PA (1984) Cell wall metabolism of C. albicans (3-(l–3) and (3-(l–6) glucan synthesis. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 73–83

    Google Scholar 

  • Sloboda RD, Van Blaricom G, Creasey WA, Rosenbaum JL, Malewista SE (1982) Griseofulvin: association with tubulin and inhibition of in vitro microtubule assembly. Biochem Biophys Res Commun 105: 882–888

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1985) The chemotherapeutic potential of inhibition or circumvention of the determinants of microbial pathogenicity. Symp Soc Gen Microbiol 38: 363–393

    Google Scholar 

  • Stiitz A (1987) Allylamine derivatives — a new class of active substances in antifungal chemotherapy. Angew Chem int Ed Engl 26: 120–128

    Google Scholar 

  • Surarit R, Shepherd MG (1987) The effects of azole and polyene antifungals on the plasma membrane enzymes of Candida albicans. J Med Vet Mycol 22: 403–413

    Article  Google Scholar 

  • Szaniszlo PJ (1985) Fungal dimorphism with emphasis on fungi pathogenic for humans. Plenum, New York

    Google Scholar 

  • Taft CS, Selitrennikoff CP (1988) LY121019 inhibits Neurospora crassa growth and (l-3)-P-D-glucan synthase. J Antibiot 51: 697–701

    Google Scholar 

  • Taft CS, Stark T, Selitrennikoff CP (1988) Cilofungin (LY121019) inhibits Candida albicans (l-3)-ß-D-glucan synthase activity. Antimicrob Agents Chemother 32: 1901–1903.

    PubMed  CAS  Google Scholar 

  • Taylor RL, Williams DM, Craven PC, Graybill JR, Drutz DJ, Magee WE (1982) Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am Rev Resp Dis 125: 610–611

    PubMed  CAS  Google Scholar 

  • Trinci APJ (1984) Antifungal agents which affect hyphal extension and hyphal branching. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents. Cambridge University Press, Cambridge, pp 113–134

    Google Scholar 

  • Trinci APJ, Ryley JF (eds) (1984) Mode of action of antifungal agents. Symp Br My col Soc 9. Cambridge University Press, Cambridge

    Google Scholar 

  • Tyms AS, Taylor DL (1988) Activity of glucosidase inhibitors against HIV infections. J Antimicrob Chemother 22: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Tyms AS, Williamson JD, Bacchi CJ (1988) Polyamine inhibitors in antimicrobial chemotherapy. J Antimicrob Chemother 22: 403–427

    Article  PubMed  CAS  Google Scholar 

  • Vance D, Goldberg I, Mitsuhashi O, Bloch K (1972) Inhibition of fatty acid synthesis by the antibiotic cerulenin. Biochem Biophys Res Comm 48: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Vanden Bossche H (1974) Biochemical effects of miconazole on fungi 1. Effects on the uptake and/or utilisation of purines, pyrimidines, amino acids and glucose by Candida albicans. Biochem Pharmacol 26: 887–899

    Google Scholar 

  • Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In: McGinnis MK (ed) Current topics in medical mycology. Springer, Berlin Heidelberg New York, 1: 313 — 351

    Google Scholar 

  • Vanden Bossche H (1988) Mode of action of pyridine, pyrimidine and azole antifungals. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors. Pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester, pp 79–119

    Google Scholar 

  • Vanden Bossche H, Janssen PAJ (1987) Biological activities of cytochrome P-450. In: Benford DJ, Bridges JW, Gibson GG (eds) Drug metabolism — from molecules to man. Taylor and Francis, London, pp 244–262

    Google Scholar 

  • Vanden Bossche H, Ruysschaert JM, Defrise-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem Pharmacol 32: 2175–2180

    Google Scholar 

  • Vanden Bossche H, Lauwers W, Willemsens G, Cools W (1985) The cytochrome P-450 dependent C17,20-lyase in subcellular fractions of the rat testis: differences in sensitivity to ketoconazole and itraconazole. In: Boobis AR, Caldwell J, De Matteis F, Elcombe CR (eds) Microsomes and drug oxidations. Taylor amp; Francis, London, pp 63–73

    Google Scholar 

  • Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Berhoeven H, Coene M-C, Lauwers W, Janssen PAJ (1987a) Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plants, and mammalian cells. Pestic Sci 21: 289–306

    Article  Google Scholar 

  • Vanden Bossche H, Willemsens G, Marichal P (1987b) Anti-Candida drugs — the biochemical basis for their action. CRC Crit Rev Microbiol 15: 57–72

    Article  Google Scholar 

  • Vanden Bossche H, Marichal P, Geerts H, Janssen PAJ (1988a) The molecular basis for itraconazole’s activity against Aspergillus fumigatus. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York pp 171–197

    Google Scholar 

  • Vanden Bossche H, Marichal P, Gorrens J, Geerts H, Janssen PAJ (1988b) Mode of action studies — basis for the search for new antifungals. Ann NY Acad Sci 544: 191–207

    Article  Google Scholar 

  • Vialaneix JP, Chamini N, Malet-Martino MC, Martino R, Michel G, Lepargneur JP (1986) Noninvasive and quantitative 19F nuclear magnetic resonance study of flucytosine metabolism in Candida strains. Antimicrob Agents Chemother 30: 756–762

    PubMed  CAS  Google Scholar 

  • Villaneuva JR, Notario V, Santos T, Villa TG (1976) (3 Glucanases in nature. Biochemistry and function of 3-glucanases in yeast). In: Peberdy JF, Rose AH, Rogers HJ, Cocking EC (eds) Microbial and plant protoplasts. Academic, London, pp 323–355

    Google Scholar 

  • Wang CC (1984) Parasite enzymes as potential targets for antiparasitic chemotherapy. J Med Chem 27: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Wilson L (1975) Action of drugs on microtubules. Life Sciences 17: 303–310

    Article  PubMed  CAS  Google Scholar 

  • Yadan J-C, Gonneau M, Sarthou P, Le Goffic F (1984) Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J Bacteriol 160: 884–888

    PubMed  CAS  Google Scholar 

  • Yamamoto H (1985) Development of validamycin, its controlling effect on rice sheath blight. Jap Pest Inform 47: 17–22

    CAS  Google Scholar 

  • Yoshida Y (1988) Cytochrome P450 of fungi: primary target for azole antifungal agents. In: McGinnis MR (ed) Current topics in medical mycology. Springer Berlin Heidelberg New York, 2: 388–418

    Google Scholar 

  • Yoshida Y, Aoyama Y (1986) Interaction of azole fungicides with yeast cytochrome P- 450 which catalyzes lanosterol 14 α-demethylation. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 123–134

    Google Scholar 

  • Yoshida Y, Aoyama Y (1987) Interaction of azole antifungal agents with cytochrome P-450 14DM purified from Saccharomyces cerevisiae microsomes. Biochem Pharmacol 36: 229–235

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kerridge, D., Vanden Bossche, H. (1990). Drug Discovery: A Biochemist’s Approach. In: Ryley, J.F. (eds) Chemotherapy of Fungal Diseases. Handbook of Experimental Pharmacology, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75458-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75458-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75460-9

  • Online ISBN: 978-3-642-75458-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics