Skip to main content

Drug Discovery: A Chemist’s Approach

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 96))

Abstract

The medicinal chemist’s role in the multidisciplinary team involved in the modern day drug discovery process is to furnish agents for biochemical and biological experimentation and ultimately for therapeutic or prophylactic use in disease. In the antifungal area, the complexity of drug-fungal interactions and the intensity of the drug effect depend to a large extent on the concentration of drug in the active biophase (e.g. cell membrane), whereas the duration of the effect is determined by its persistence in a sufficient concentration at the active site. Drug molecules, therefore, owe much of their effect to interaction with biological structures, e.g. lipoprotein receptors, biomembranes and nucleic acids. This interaction triggers a series of steps, ultimately resulting in a macroscopic physiological change that constitutes the pharmacological effect. Ideally, only by first unravelling the relatively simple primary interaction between the drug molecule and a macromolecular structure can drug activity at the molecular level be understood. The increasing complexity of the whole organism, and then the animal model, requires an understanding of many more parameters — including some not always available to the chemist in the early phase of the programme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar M, Munday KA, Rahimtula AD, Watkinson IA, Wilton DC (1969) Mechanism of reduction of double bonds in biological systems: conversion of desmosterol into cholesterol. Chem Comms 1969: 1287–1288

    Google Scholar 

  • Bailey RB, Thompson ED, Parks LW (1974) Kinetic properties of S-adenosyl-methionine: A24-sterol methyltransferase enzyme(s) in mitochondrial structures of Saccharomyces cerevisiae. Biochim Biophys Acta 334: 127–136

    CAS  Google Scholar 

  • Barrett-Bee K, Lees J, Pinder P, Campbell J, Newboult L (1988) Biochemical studies with a novel antifungal agent, ICI 195,739. Ann NY Acad Sci 544: 231–244

    Article  PubMed  CAS  Google Scholar 

  • Borgers M, Waldron HA (1981) The action of ketoconazole on fungi. Clin Res Rev 1: 165–171

    CAS  Google Scholar 

  • Boyle FT, Ryley JF, Wilson RG (1987) In vitro-in vivo correlations with azole antifungals. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. J R Prous, Barcelona, pp S1:31–S1:41

    Google Scholar 

  • Boyle FT, Gilman DJ, Gravestock MB, Wardleworth JM (1988) Synthesis and structure activity relationships of a novel antifungal agent, ICI 195,739. Ann N Y Acad Sci 544: 86–100

    Article  PubMed  CAS  Google Scholar 

  • Conney AH (1986) Induction of microsomal cytochrome P-450 enzymes. Life Sei 39: 2493 - 2518

    Article  CAS  Google Scholar 

  • Cornforth JW, Carrell HL, Glusker JP, Talalay P (1979) The absolute configuration at the sulfonium center in S-adenosyl-L-methionine. In: Usdin E, Borchardt RT, Creveling CR (eds) Transmethylation. Developments in Neuroscience, vol 5. Elsevier/North Holland, New York, pp 19–25

    Google Scholar 

  • Counsell RE, Klimstra PD, Ranney RE, Cook DL (1962) Hypocholesterolemic agents. 1. 20a-(2-dialkylaminoethyl)aminopregn-5-en-3ß-ol derivatives. J Med Pharm Chem 5: 720–729

    Article  CAS  Google Scholar 

  • De La Haba G, Jamieson GA, Mudd SH, Richards HH (1959) S-Adenosylmethionine: the relation of configuration at the sulfonium center to enzymatic reactivity. J Am Chem Soc 81: 3975–3980

    Article  Google Scholar 

  • Floss HG, Mascaro L, Tsai M-D, Woodard RW (1979) Stereochemistry of enzymatic transmethylation. In: Usdin E, Borchardt RT, Creveling CR (eds) Transmethylation. Developments in Neuroscience, vol 5. Elsevier/North Holland, New York, pp 135–141

    Google Scholar 

  • Gordee RS, Butler TF (1973) A9145, a new adenine-containing antifungal antibiotic. 28 II. Biological activity.J Antibiot 26: 466–470

    CAS  Google Scholar 

  • Kabara JJ, Holzschu DL, Catsoulacos DP (1976) Structure-function activity of azasterols and nitrogen-containing steroids. Lipids 11: 755–762

    Article  PubMed  CAS  Google Scholar 

  • Kowal J (1983) The effect of ketoconazole on steroidogenesis in cultured mouse adrenal cortex tumor cells. Endocrinology 112: 1541–1543

    Article  PubMed  CAS  Google Scholar 

  • Lederer E (1965) C-methylations in biological systems. Israel J Med Sci 1: 1129–1147

    CAS  Google Scholar 

  • Malhotra HC, Nes WR (1971) The mechanism of introduction of alkyl groups at C-24 of sterols. J Biol Chem 246: 4934–4937

    PubMed  CAS  Google Scholar 

  • Marriott MS, Richardson K (1987) The discovery and mode of action of fluconazole. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. J R Prous, Barcelona, pp 81–92

    Google Scholar 

  • McCammon MT, Hartmann M-A, Bottema CDK, Parks LW (1984) Sterol methylation in Saccharomyces cerevisiae. J Bacteriol 157: 475–483

    PubMed  CAS  Google Scholar 

  • Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci 15: 133–155

    Article  CAS  Google Scholar 

  • Nes WR, Sekula BC, Nes WD, Adler JH (1978) The functional importance of strctural features of ergosterol in yeast. J Biol Chem 253: 6218–6225

    PubMed  CAS  Google Scholar 

  • Odds FC (1985) Laboratory tests for the activity of imidazole and triazole antifungal agents in vitro. Semin Dermatol 4: 260–270

    Google Scholar 

  • Parks LW (1958) S-Adenosylmethionine and ergosterol synthesis. J Am Chem Soc 80: 2023–2024

    Article  CAS  Google Scholar 

  • Parks LW, McLean-Bowen C, McCammon M, Hays PR (1979) S-Adenosylmethionine: A24-sterol methytransferase: studies on its regulation and physiological role. In: Usdin E, Borchardt RT, Creveling CR (eds) Transmethylation. Developments in neuroscience, vol 5. Elsevier/North Holland, New York, pp 319–327

    Google Scholar 

  • Pierce AM, Unrau AM, Oehlschlager AC, Woods RA (1979) Azasterol inhibitors in yeast. Inhibition by the A24-sterol methy transferase and the 24-methylene sterol Δ24-reductase in sterol mutants of Saccharomyces cerevisiae. Can J Biochem 57: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Pierce AM, Unrau AM, Oehlschlager AC, Woods RA (1979) Azasterol inhibitors in yeast. Inhibition by the Δ24-sterol methy transferase and the 24-methylene sterol Δ24-reductase in sterol mutants of Saccharomyces cerevisiae. Can J Biochem 57: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Pierce HD, Pierce AM, Srinivasan R, Unrau AM, Oehlschlager AC (1978) Azasterol inhibitors in yeast. Inhibition of the 24-methylene sterol Δ24(28) reductase and Δ24-sterol methyltransferase of Saccharomyces cerevisiae by 23-azacholesterol. Biochim Biophys Acta 529: 429–437

    PubMed  CAS  Google Scholar 

  • Plempel M, Berg D, Abbink J (1987) Aiitimycotic characteristics of bifonazole. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. J R Prous, Barcelona, pp 287–312

    Google Scholar 

  • Rahier A, Genot J-C, Schuber F, Benveniste P, Narula AS (1984) Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbo- cationic ion high-energy intermediate. J Biol Chem 259: 15215–15223

    PubMed  CAS  Google Scholar 

  • Ryder NS (1988) Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci 544: 208–220

    Article  PubMed  CAS  Google Scholar 

  • Ryley JF, Wilson RG (1982) ICI 153,066, a new orally active antifungal agent. 22nd Intersci Conf Antimicrob Agents Chemother, Miami Beach, Abstr 477

    Google Scholar 

  • Ryley JF, McGregor S, Wilson RG (1988) Activity of ICI 195,739 — a novel, orally active bistriazole — in rodent models of fungal and protozoal infections. Ann NY Acad Sci 544: 310–328

    Article  PubMed  CAS  Google Scholar 

  • Sisler HD, Ragsdale NN (1984) Biochemical and cellular aspects of the antifungal action of ergosterol biosynthesis inhibitors. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents. British Mycological Society Symposium 9. Cambridge University Press, Cambridge, pp 257–282

    Google Scholar 

  • Thompson ED, Parks LW (1974) Effect of altered sterol composition on growth characteristics of Saccharomyces cerevisiae. J Bacteriol 120: 779–784

    PubMed  CAS  Google Scholar 

  • Van Cutsem J, Van Gerven F, Janssen PAJ (1987) The in vitro and in vivo antifungal activity of itraconazole. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. J R Prous, Barcelona, pp 177–192

    Google Scholar 

  • Vanden Bossche H (1987) Itraconazole: a selective inhibitor of the cytochrome P-450 dependent ergosterol biosynthesis. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. J R Prous, Barcelona, pp 207–221

    Google Scholar 

  • Vanden Bossche H, Willemsens G, Marichal P, Cools W, Lauwers W (1984) The molecular basis for the antifungal activities of N-substituted azole derivatives. Focus on R51211. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents. British Mycological Society Symposium 9. Cambridge University Press, Cambridge pp 321–341

    Google Scholar 

  • Wojciechowski ZA, Goad LJ, Goodwin TW (1973) S-adenosyl-L-methionine-cycloar- tenol methyltransferase activity in cell free systems from Trebouxia sp. and Scenedesmus obliquus. Biochem J 136: 405–412

    PubMed  CAS  Google Scholar 

  • Worthington PA (1982) Heterocyclic compounds. Br Patent Appl 2078719A

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyle, F.T. (1990). Drug Discovery: A Chemist’s Approach. In: Ryley, J.F. (eds) Chemotherapy of Fungal Diseases. Handbook of Experimental Pharmacology, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75458-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75458-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75460-9

  • Online ISBN: 978-3-642-75458-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics