Advertisement

Influence of MHC and Non-MHC Genes on Tumorigenesis and the Use of the Recombinant Congenic Strains as a Novel Tool for the Genetic Analysis of Tumor Susceptibility

  • P. Demant
  • L. C. J. M. Oomen
  • C. J. A. Moen
  • M. A. Van Der Valk
  • A. A. M. Hart
  • L. F. M. Van Zutphen
Conference paper

Abstract

One of the main developments in the contemporary biology is the rapid progress in the structural analysis of the mammalian genome, concentrated mainly on two species - the human and the mouse. A specific potential of the analysis of the mouse genome resides in the possibility of combining the structural analysis with the study of the genetic determination of various functional traits. This contribution of mouse studies is especially valuable in view of the limited possibilities of direct biological experiments in humans.

Keywords

Major Histocompatibility Complex Papillary Tumor Lung Tumor Inbred Strain Congenic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey DW (1965) A search for genetic background influences on survival time of skin grafts from mice bearing Y-linked histoincompatibility. Transpl 3: 531–534CrossRefGoogle Scholar
  2. Bailey DW (1971) Recombinant inbred strains: An aid to finding identity, linkage, and function of histocompatibility and other genes. Transpl 11: 325–327CrossRefGoogle Scholar
  3. Demant P, Hart AAM (1986) Recombinant congenic strains: A new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24: 416–422PubMedCrossRefGoogle Scholar
  4. Demant P, Oomen LCJM, Oudshoorn-Snoek M (1989) Genetics of tumor susceptibility in the mouse: Major histocompatibility complex and non-MHC genes. Advances in Cancer Research 53: 117–179PubMedCrossRefGoogle Scholar
  5. Falconer DS (1963) Quantitative inheritance. In: Burdette WJ (ed) Methodology in Mammalian Genetics. Holden-Day, San Francisco, pp 193–216Google Scholar
  6. Faraldo MJ, Dux A, Mùhlbock O, Hart G (1979) Histocompatibility genes (the H-2 complex) and susceptibility to spontaneous lung tumours in mice. Immunogenetics 9: 383–404CrossRefGoogle Scholar
  7. Fleiszer D, Hilgers J, Skamene E (1987) Multigenic control of colon carcinogenesis in mice treated with 1,2-dimethyl-hydrazine. Curr Topics Microbiol Immunol 137: 243–249Google Scholar
  8. Heston WE, Dunn TB (1951) Tumor development in susceptible strain A and resistant strain L lung transplants in LAF1 hosts. J Natl Cancer Inst 11: 1057–1071PubMedGoogle Scholar
  9. Hilgers J, Arends J (1985) A series of recombinant inbred strains between the BALB/cHeA and STS/A mouse strains. Curr Topics Microbiol Immunol 122: 31–37CrossRefGoogle Scholar
  10. Kauffman SL, Alexander L, Sass L (1979) Histologic and ultrastructural features of the Clara cell adenoma of the mouse lung. Lab Invest 40: 708–716PubMedGoogle Scholar
  11. Lathrop AEC, Loeb L (1913–1914) The incidence of cancer in various strains of mice. Proc. Soc. Exp. Biol. Med. 11: 34–38Google Scholar
  12. Le Meur M, Gerlinger P, Benoist C, Mathis D (1985) Correcting an immune-response deficiency by creating Eα gene transgenic mice. Nature 316: 38–42PubMedCrossRefGoogle Scholar
  13. Lévi-Strauss M, Carroll MC, Steinmetz M, Meo T (1988) A previously undetected MHC gene with an unusual periodic structure. Science 240: 201–202PubMedCrossRefGoogle Scholar
  14. Lilly F, Boyse EA, Old LJ (1964) Genetic basis of susceptibility to viral leukemogenesis. Lancet ii: 1207–1209Google Scholar
  15. Malkinson AM, Nesbitt MN, Skamene E (1985) Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: Use of AxB and BxA recombinant inbred lines indicating a three-locus genetic model. J Natl Cancer Inst 75: 971–974PubMedGoogle Scholar
  16. Mintz B, Custer RP, Donnelly AJ (1971) Genetic diseases and developmental defects analyzed in allophenic mice. Int Rev Exp Pathol 10: 143–179PubMedGoogle Scholar
  17. Miyashita N, Moriwaki K (1987) H-2-controlled genetic susceptibility to pulmonary adenomas induced by urethane and 4-nitroquinoline 1-oxide in A/Wy congenic strains. Jpn J Cancer Res (Gann) 78: 494–498Google Scholar
  18. Miyashita N, Moriwaki K, Migita S (1989) The H-2 class II genes and the susceptibility to the development of pulmonary adenoma in mice. Immunogenetics 29: 14–18PubMedCrossRefGoogle Scholar
  19. Oomen LCJM, Demant P, Hart AAM, Emmelot P (1983) Multiple genes in the H-2 complex affect differently the number and growth rate of transplacentally induced lung tumours in mice. Int J Cancer 31: 447–454PubMedCrossRefGoogle Scholar
  20. Oomen LCJM, van der Valk MA, Hart AAM, Demant P, Emmelot P (1988) Influence of mouse major histocompatibility complex (H-2) on N-ethyl-N-nitrosourea-induced tumor formation in various organs. Cancer Res 48: 6634–6641PubMedGoogle Scholar
  21. Oomen LCJM, van der Valk MA, Hart AAM, Demant P (1989) Glucocorticoid hormone effect on transplacental carcinogenesis and lung differentiation: Influence of histocompatibility-2 (H-2) complex. J Natl Cancer Inst 81: 512–517PubMedCrossRefGoogle Scholar
  22. Rehm S, Ward JM, ten Have-Opbroek AAW, Anderson LM, Singh G, Katyal SL, Rice JM (1988) Mouse papillary lung tumors transplacentally induced by N-Nitrosoethylurea: Evidence for alveolar type II cell origin by comparative light microscopic, ultrastructural, and immunohistochemical studies. Cancer Res 48: 148–160PubMedGoogle Scholar
  23. Roderick TH, Schlager G (1966) Multiple factor inheritance. In: Green EL (ed) Biology of the Laboratory Mouse. McGraw-Hill, New York, pp 151–164Google Scholar
  24. Ryan J, Barker PE, Nesbitt MN, Ruddle FH (1987) KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J Natl Cancer Inst 79: 1351–1357PubMedGoogle Scholar
  25. Shapiro JR, Kirschbaum A (1951) Intrinsic tissue response to induction of pulmonary tumors. Cancer Res 11: 644–647PubMedGoogle Scholar
  26. Snell GD (1958) Histocompatibility genes of the mouse. II. Productions and analysis of isogenic resistant lines. J Natl Cancer Inst 21: 843–877PubMedGoogle Scholar
  27. Tsuge I, Shen FW, Steinmetz M, Boyse EA (1987) A gene in the H-2S-H-2D interval of the major histocompatibility complex which is transcribed in B cells and macrophages. Immunogenetics 26: 378–380PubMedCrossRefGoogle Scholar
  28. Tyzzer EE (1907) A study of heredity in relation to the development of tumors in mice. J Med Res 17: 199–211PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • P. Demant
    • 1
  • L. C. J. M. Oomen
    • 1
  • C. J. A. Moen
    • 1
  • M. A. Van Der Valk
    • 1
  • A. A. M. Hart
    • 2
  • L. F. M. Van Zutphen
    • 3
  1. 1.Department of Molecular GeneticsThe Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis)AmsterdamThe Netherlands
  2. 2.Department of Clinical OncologyThe Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis)AmsterdamThe Netherlands
  3. 3.Department of Laboratory Animal ScienceUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations