Skip to main content

The Calculation of Electrolyte Solution Properties with the Help of the ELDAR Data and Method Bank Exemplified by Electrolyte Conductance

  • Conference paper
Software Development in Chemistry 4

Abstract

Chemical models based on mean force potentials are generally used to calculate properties of electrolyte solutions from measurements with the help of the Gauss-Marquardt method for least squares fits. For these calculation processes ELDAR offers a data bank managing fact knowledge, a method bank managing algorithmic knowledge and a communication manager supplying the input of the modules. The interaction of data and method bank for the automatic calculation of electrolyte solution properties and the production of basic data under the control of the communication manager is exemplified for electrolyte conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthel J (1979) The Temperature Dependence of the Properties of Electrolyte Solutions. I. A Semi-Phenomenological Approach to an Electrolyte Theory Including Short Range Forces. Ber Bunsenges Phys Chem 83:252

    CAS  Google Scholar 

  2. Kunz W,Barthel J (1990) Vapor Pressure Measurements on Nonaqueous Solutions — Part 6. Some Remarks on Integral Equations. J Sol Chem 19: (in press)

    Google Scholar 

  3. Barthel J, Buchner R, Wittmann H (1984) Leitfähigkeit und dielektrische Eigenschaften wäßriger CdSO4-Lösungen. Z Phys Chem NF 139:23

    Article  CAS  Google Scholar 

  4. Barthel J (1985) The Chemical Model of Electrolyte Solutions and its Use for Calculating Solution Properties. In Glaeser PS (ed) The Role of Data in Scientific Progress. Elsevier Publishers, 337

    Google Scholar 

  5. Krumgalz BS, Barthel J (1984) Conductivity Studies of Electrolyte Solutions in Dimethyl-formamide at various Temperatures. Z Phys Chem NF 142:167

    Article  CAS  Google Scholar 

  6. Brandt S (1975) Datenanalyse. BI, Mannheim

    Google Scholar 

  7. Kutas T (1984) A New Method for Solving Nonlinear Least Squares Problem. In: Havranek T, Sidak Z, Novak M (ed) COMPSTAT. Physica Verlag, Heidelberg 415

    Google Scholar 

  8. Marquardt DW (1963) An Algorithm for Least Squares Estimation of Nonlinear Parameters. J Soc Indust Appl Math 11:431

    Article  Google Scholar 

  9. LeRoux S, Messean A, Vila JP (1982) Standardized Comparsion of Nonlinear Model Fitting Algorithms. In: Caussiunus H, Ettinger P, Tomassone R (ed) COMPSAT. Physica Verlag, Heidelberg, 306

    Google Scholar 

  10. Engeln-Muellges G, Reutter F (1984) Formelsammlung zur Numerischen Mathematik, BI, Mannheim

    Google Scholar 

  11. Schmeer G (1981) Der Einfluß der Umgebung des Reaktionszentrums auf Hydrolysereaktionen der Ester und Amide aliphatischer Carbonsäuren, Habilitationsschrift, Regensburg

    Google Scholar 

  12. Bard Y (1974) Nonlinear Parameter Estimation. Academic Press, New York

    Google Scholar 

  13. Barnett V, Lewis T (1978) Outliers in Statistical Data. Wiley & Sons, Chichester

    Google Scholar 

  14. Dierckx P (1980) An algorithm of cubic fitting with convexity constraints. Computing 24:349

    Article  Google Scholar 

  15. Barthel J, Popp H (1989) Die Methodenbank des wissensbasierten Systems ELDAR zur (statistischen) Analyse von Elektrolytlösungen auf einem Mikrocomputer. Report BMFT-FB: 106 3211 0

    Google Scholar 

  16. Popp H (1984) Mensch — Mikrocomputer Kommunikationssystem. Management Expertensystem in der Chemischen Industrie auf der Basis eines universellen Daten- und Prozedu-ralmodells auf einem Mikrocomputerverbundsystem. Dissertation, Regensburg

    Google Scholar 

  17. Barthel J, Popp H (1986) ELDAR, eine benutzerfreundliche relationale Elektrolytdaten-bank zur Erzeugung von Stoffdatentensoren auf einem Mikrocomputerverbundsystem. Forschungsbericht BMFT: 106 3208 9

    Google Scholar 

  18. Barthel J, Popp H, Schmeer G (1988) Die ELDAR-Methodenbank für Elektrolytlösungen. In: Gasteiger J (ed) Workshop „Computer in der Chemie“Softwareentwicklung in der Chemie 2. Springer, Berlin

    Google Scholar 

  19. Melsheimer J, Langner K (1980) On the difficulties of evaluating viscosity/temperature data. Colloid & Polymer Sci 258:160

    Article  CAS  Google Scholar 

  20. Barthel J, Gores H, Schmeer G, Wachter R (1983) Nonaqueous Electrolyte Solutions in Chemistry and Modern Technology. In: Boschke FL (ed) Topics in Current Chemistry. Springer, Berlin 111:33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthel, J., Popp, H., Schmeer, G. (1990). The Calculation of Electrolyte Solution Properties with the Help of the ELDAR Data and Method Bank Exemplified by Electrolyte Conductance. In: Gasteiger, J. (eds) Software Development in Chemistry 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75430-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75430-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52173-0

  • Online ISBN: 978-3-642-75430-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics