Nekhoroshev Stability Estimates for Symplectic Maps and Physical Applications

  • G. Turchetti
Part of the Springer Proceedings in Physics book series (SPPHY, volume 47)


The Nekhoroshev stability estimates for symplectic maps of R 2d are presented. After an illustration of the basic ideas in a simple hamiltonian model, the dynamics of a charged particle in the magnetic lattice of an accelerator is considered and it is shown to be conveniently described by a symplectic map. After recalling the basic properties of the Birkhoff normal forms, we state a general theorem on the stability of the orbits and sketch the proof. The factorial divergence of the Birkhoff series appears to arise from nonlinearity as well as from the divisors, and a functional equation with interesting analytic properties is obtained from the majorant series.


Normal Form Diophantine Condition Majorant Series Magnetic Lattice Birkhoff Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 98, 4, 527–530, (1954). V.l. Arnol’d, Russ. Math. Surv., 18, 5, 9–36, and 6, 85–191 (1963). J. Moser, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 1, 1, (1962).Google Scholar
  2. [2]
    V.L. Arnol’d, Sov. Math. Dokl, 5, 581–585, (1964).MATHGoogle Scholar
  3. [3]
    N.N. Nekhoroshev, Russ. Math. Surv., 32, 6, 1–65, (1977).MATHCrossRefGoogle Scholar
  4. [4]
    A. Giorgilli and L. Galgani, Cel. Mech., 37, 95–112, (1985). G. Benettin and G. Gallavotti, J. Stat. Phys., 44, 293–338, (1986). A. Giorgilli, Recent developments of perturbation theory of classical hamiltonian systems, in Nonlinear Dynamics Ed. by G. Turchetti, World Scientific, Singapore (1989)MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simo, Journ. of Diff. Eq. 77, 167–198 (1989).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Lecture Notes in Physics N° 247, Springer Verlag (1986)Google Scholar
  7. [7]
    A. Bazzani, P. Mazzanti, G. Servizi and G. Turchetti, II Nuovo Cimento 102B, 51–80, (1988).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A.J. Liechtenberg, M.A. Liebermann Regular and stochastic motions in dynamical systems, Springer Verlag (1983)Google Scholar
  9. [9]
    A. Bazzani, M. Malavasi, S. Siboni and G. Turchetti, Perturbative methods in the analysis of magnetic Gelds structure, Phys. Dep. Univ. of Bologna preprint (1989)Google Scholar
  10. [10]
    G.D. Birkhoff, Acta Math., 43, 1–119, (1920).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    G. Turchetti, Perturbative Methods for Hamiltonian Maps, in Methods and Applications of Nonlinear Dynamics, A.W. Saenz editor, World Scientific, Singapore, 95–154, (1988). G. Servizi, G. Turchetti, Il Nuovo Cimento B95, 121–154 (1986)Google Scholar
  12. [12]
    A. Bazzani, S. Marmi, G. Turchetti Nechoroshev estimates for isochronous symplectic maps Phys. Dep. Univ. of Bologna preprint submitted to Celestial Mechanics.Google Scholar
  13. [13]
    D. Bessis, S. Marmi, and G. Turchetti, work in progress.Google Scholar
  14. [14]
    M. Malavasi, S. Marmi, G. Servizi and G. Turchetti in preparationGoogle Scholar
  15. [15]
    J. Palis and J.C. Yoccoz, Rigidity of Centralizers of Diffeomorphisms, Ann. Ec. Norm. Sup., in press, (1988).Google Scholar
  16. [16]
    A. Bazzani, Normal Forms for symplectic maps in R2rl, Cel. Mech., 42, 107–128, (1988).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. Turchetti
    • 1
    • 2
  1. 1.Dipartimento di Fisica dellaUniversità di BolognaBolognaItaly
  2. 2.INFN sezione di BolognaItaly

Personalised recommendations