Skip to main content

Iterating Random Maps and Applications

  • Conference paper
Number Theory and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 47))

  • 425 Accesses

Abstract

A discrete-time Markov process on a locally compact metric space obtained by randomly iterating a finite number of Lipschitz maps is considered. The probability of choosing a particular map at each step is allowed to depend on the current position. Conditions are given that guarantee a unique invariant, attractive measure for the process. An application to real Julia sets associated with polynomials is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Barnsley and S. Demko. Iterated Function Systems and the Global Construction of Fractals. Proc. R. Soc. London. Vol. A 399 (1985), 243–275.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. Hutchinson. Fractals and Self Similarity. Indiana Univ. J. of Math. 30 (1981), 713–747.

    Google Scholar 

  3. B. Mandelbrot. The Fractal Geometry of Nature. 1982. W. H. Freeman. San Francisco.

    MATH  Google Scholar 

  4. O. Onicescu and G. Mihoc. Sur les chaines de variables statistique. Bull. Soc. Math, de France 59 (1935), 174–192.

    MATH  Google Scholar 

  5. S. Karlin. Some Random Walks Arising in Learning Models. Pac. J. Math. 3 (1953), 725–756.

    MathSciNet  MATH  Google Scholar 

  6. L. Dubins and D. Freedman. Invariant Probabilities for Certain Markov Processes. Ann. Math. Stat. 37 (1966), 837–848.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bellissard, D. Bessis and P. Moussa. Chaotic States of Almost Periodic Schrödinger Operators. Phys. Rev. Lett. 49 (1982), 701–704.

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Bessis, J. S. Geronimo and P. Moussa. Function Weighted Measures and Orthogonal Polynomials on Julia Sets. Const. Approx. 4 (1988), 157–173.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Diaconis and M. Shahshahani. Products of Random Matrices and Computer Image Generation in Random Matrices and Their Applications. 50 Conf. Math. A.M.S., Providence, RI (1986).

    Google Scholar 

  10. S. Demko, L. Hodges and B. Naylor. Construction of Fractal Objects with Iterated Function Systems. SIGGRAPH ’85 Proceedings (1985), 271–278.

    Google Scholar 

  11. M. Berger and H. M. Soner. Random Walks Generated by Affine Mappings. J. Theor. Prob. 1 (1988), 239–254.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo. Invariant Measures for Markov Processes Arising from Iterated Function Systems with Place-Dependent Probabilities. Ann. Inst. H. Poincaré Prob, et Stat. 24 (1988), 367–394.

    Google Scholar 

  13. M. F. Barnsley and J. H. Elton. A New Class of Markov Processes for Image Encoding. Adv. Appi. Prob. 20 (1988), 14–32.

    Google Scholar 

  14. H. Brolin. Invariant Sets Under Iteration of Rational Functions. Ark. Mat. 6 (1965), 103–144.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. F. Barnsley, J. S. Geronimo and A. N. Harrington. On the Invariant Sets of a Family of Quadratic Maps. Commun. Math. Phys. 88 (1983), 479–501.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. P. Moussa. Iteration des polynomes et propriétés d’orthogonalite. Ann. Inst. H. Poincaré 44 (1986), 315–325.

    MathSciNet  MATH  Google Scholar 

  17. M. F. Barnsley, J. S. Geronimo and A. N. Harrington. Almost Periodic Jacobi Matrices Associated with Julia Sets. Comm. Math. Phys. 99 (1985), 303–317.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geronimo, J.S. (1990). Iterating Random Maps and Applications. In: Luck, JM., Moussa, P., Waldschmidt, M. (eds) Number Theory and Physics. Springer Proceedings in Physics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75405-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75405-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75407-4

  • Online ISBN: 978-3-642-75405-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics