Skip to main content

In-vitro-Testung von Chemotherapeutika

  • Chapter
  • 125 Accesses

Zusammenfassung

Im allgemeinen bedürfen Infektionserkrankungen einer antibiotischen Therapie. Es gibt jedoch keine Universalantibiotika, die jeden Krankheitserreger in therapeutisch erreichbaren Konzentrationen erfassen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Food and drug administration (1972) Rules and regulations: antibiotic susceptibility discs. Federal Register 37: 20525

    Google Scholar 

  2. Methoden zur Empfindlichkeitsprüfung anaerober bakterieller Krankheitserreger gegen Chemotherapeutika (1984) DIN-Norm 58944, Teil 1–2. Beuth, Berlin

    Google Scholar 

  3. Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (auβer Mykobakterien) gegen Chemotherapeutika (1981) DIN-Norm 58940, Teil 1–6. Beuth, Berlin

    Google Scholar 

  4. Approved Standard ASM-2. Performance standards for antimicrobial disc susceptibility tests (1979) 2nd ed. National Committee for Clinical Laboratory Standards, Villanova

    Google Scholar 

  5. Dilution procedures for susceptibility testing of aerobic bacteria. Approved standard M7-A (1985) National Committee for Clinical Laboratory Standards, Villanova

    Google Scholar 

  6. Editorial (1979) Vergleich von verschiedenen normierten Methoden für die Empfindlichkeitsprüfung von Bakterien. Forum Mikrobiol 2: 129–132

    Google Scholar 

  7. Working Party of the British Society for Antimicrobial Chemotherapy (1988) Breakpoints in in-vitro antibiotic sensitivity testing. J Antimicrob Chemother 21: 701–710

    Article  Google Scholar 

  8. Anhalt JP, Washington JA (1984) Antimicrobial susceptibility test of aerobic and facultativ anaerobic bacteria. In: Washington JA (ed) Laboratory Procedures in Clinical Microbiology ( 2nd ed ). Springer, New York Heidelberg Berlin

    Google Scholar 

  9. Ansorg R, Bagger F (1977) Untersuchungen zur Empfindlichkeitsbestimmung von Candida albicans gegen 5-Fluorocytosin. Arztl Labor 23: 458–464

    CAS  Google Scholar 

  10. Barry AL, Badal RE (1982) Quality control limits for the agar overlay disc diffusion antimicrobial susceptibility test. J Clin Microbiol 16: 1145–1147

    PubMed  CAS  Google Scholar 

  11. Barry AL, Thornsberry C (1985) Susceptibility testing: diffusion test procedures. In: Lennette EH, Balows A, Hausler WJ, Shadomy HJ (eds) Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington

    Google Scholar 

  12. Bähr V, Ulimann U (1983) Biochemische Charakterisierung von β-Laktamasen. In: Betalaktamasen. Fischer, Stuttgart New York

    Google Scholar 

  13. Bockhorst W, Schiek W (1983) Ablösung des Agardiffusionstestes für die routinemäβige Sensibilitätsprüfung von Bakterien gegen Antibiotika durch Bestimmung der MHK im Mikrotiter-Verfahren. Laboratoriumsmedizin 7: 60–65

    Article  Google Scholar 

  14. Borgers H, de Brabander M, van den Bossche H, van Cutsem J (1979) Promotion of Pseudomycelium formation of Candida albicans in culture. Postgrad Med J 55: 687–691

    Article  PubMed  CAS  Google Scholar 

  15. Borgers M, de Brabander M, van den Bossche H, van Cutsem J (1979) The effects of the new antifungal ketoconazole on Candida albicans. 7th Congress of the International Society for Human and Animal Mycology ( IS-HAM ), Jerusalem/Israel

    Google Scholar 

  16. Boyce JM (1984) Revaluation of the ability of the standardized disc diffusion test for detect methicillin-resistant strains of Staphylococcus aureus. J Clin Microbiol 19:813– 817

    PubMed  CAS  Google Scholar 

  17. Braveny I, Machka K, Bartmann K, Fabricius K, Daschner J, Petersen KF, Grimm H, Ullmann U, Freiesleben H (1980) Antibiotikaresistenz von Haemophilus influenzae in der Bundesrepublik Deutschland. Dtsch Med Wochenschr 105: 1341–1344

    Article  PubMed  CAS  Google Scholar 

  18. Braveny I (1979) In-vitro-Aktivität von Cefaclor gegen Haemophilus influenzae im Vergleich zu verschiedenen oralen Chemotherapeutika. Infection 7: 532–535

    Article  PubMed  CAS  Google Scholar 

  19. Bridson EY (1978) Die Zusammensetzung unvollständig definierter Kulturmedien zur Überwindung des antibiotischen Antagonismus. Immun Infekt 6: 229–232

    PubMed  CAS  Google Scholar 

  20. Bryan LE (1988) General mechanisms of resistance to antibiotics. J Antimicrob Chemother 22: 1–15

    Article  PubMed  CAS  Google Scholar 

  21. Bryan LE, O’Hara K, Wong S (1984) Lipopolysaccharide changes in impermeability- type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 181–186

    PubMed  Google Scholar 

  22. Calhoun DL, Galgiani JN (1984) Analysis of pH and buffer effects on flucytosine activity in broth dilution susceptibility testing of Candida albicans in two synthetic media. Antimicrob Agents Chemother 26: 364–367

    PubMed  CAS  Google Scholar 

  23. Casals JB, Pederson OG (1978) Antimicrobial sensitivity testing using neo-sensitabs. Technical Manual. A/S Rosco Taastrap, Dänemark

    Google Scholar 

  24. Charles D, Obst D (1954) Placental transmission of antibiotics. J Obstet Gynecol Br Emp 61: 750–757

    Article  CAS  Google Scholar 

  25. Dermoumi H (1979) Resistenzbestimmung bei klinisch bedeutsamen Sproβpilzen — ein Vergleich zwischen Reihenverdünnungs- und Hemmhoftest. Mykosen 23: 1–9

    Google Scholar 

  26. Dickert H, Machka K, Braveny I (1981) The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection 9: 18–24

    Article  Google Scholar 

  27. Dillin LK, How SE (1984) Early detection of oxacillin-resistant staphylococcal strains with hypertonic broth diluent for microdilution panels. J Clin Microbiol 19: 473–476

    Google Scholar 

  28. Doern GV, Jones RN (1988) Antimicrobial susceptibility testing of Haemophilus influenzae, Branhamella catarrhalis and Neisseria gonorrhoeae. Antimicrob Agents Chemother 32: 1747–1753

    PubMed  CAS  Google Scholar 

  29. Doern GV, Jorgensen JH, Thornsberry C, Preston DA, Tubert T, Redding JS, Maher LA (1988) National collaborative study of the prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae. Antimicrob Agents Chemother 32: 180–185

    PubMed  CAS  Google Scholar 

  30. Doern GV, Tubert T (1987) Detection of β-lactamase activity among clinical isolates of Branhamella catarrhalis with six different β-lactamase assays. J Clin Microbiol 25: 1380–1383

    PubMed  CAS  Google Scholar 

  31. Doern GV, Tubert T (1987) Disk diffusion susceptibility testing of Branhamella catarrhalis with ampicillin and seven other antimicrobial agents. Antimicrob Agents Chemother 31: 1519–1523

    PubMed  CAS  Google Scholar 

  32. Doern GV, Tubert T (1987) Effect of inoculum size on results of macrotube broth dilution susceptibility tests with Branhamella catarrhalis. J Clin Microbiol 25: 1576–1578

    PubMed  CAS  Google Scholar 

  33. Drouhet E, Barale T, Bastide J, Jouvet S, Maillie M, Biava M, Kures L, Percebois G, Blanc C, Borderon JC, Camerlynck P, Cazaux M, Seguela J, Dupont B, Koening H, Kremer M, Billiault X, Goullier A, Grillot R, Ambroise-Thomas P, Regli P, Viviani MA, Tortorano AM (1981) Standardisation de l’antibiogramme antifongique rapport du groupe d’études de la Société Française de Mycologie Médicale. Bull Soc Franç Med Mycol 10: 131–134

    Google Scholar 

  34. Ericsson HM, Sherris JC (1971) Antibiotic sensitivity testing: report of an international collaborative study. Acta Pathol Microbiol Immunol Scand [B] 217: 1

    Google Scholar 

  35. Gavan TL, Barry AL (1980) Microdilution test procedures. In: Lennette EH, Balows A, Hausler WJ, Truant JP (eds) Manual of Clinical Microbiology 3rd ed. American Society for Microbiology, Washington

    Google Scholar 

  36. Godfrey AJ, Hatlelid L, Bryan LE (1984) Correlation between lipopolysaccharide structure and permeability resistance in /Mactam-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 181–186

    PubMed  CAS  Google Scholar 

  37. Greenwood D (1981) In vitro Veritas? Antimicrobial susceptibility tests and their clinical relevance. J Infect Dis 144: 380–385

    Article  PubMed  CAS  Google Scholar 

  38. Greenwood D (1978) Inokulum-Effekte und bakterielle Resistenz. Immun Infekt 6: 226–228

    PubMed  CAS  Google Scholar 

  39. Hoeprich PD, Finn PD (1972) Obfuscation of the activity of antifungal antimicrobics by culture media. J Infect Dis 126: 353–361

    Article  PubMed  CAS  Google Scholar 

  40. Isenberg HD, d’Amato RR (1984) Rapid methods for antimicrobic susceptibility testing. In: Ristuccia AM, Cunha BA (eds) Antimicrobial Therapy. Raven Press, New York

    Google Scholar 

  41. Jenkins RD, Stevens SL, Craxthorn JM, Thomas TW, Guinan ME, Matsen JM (1985) False susceptibility of enterococci to aminoglycosides with blood-enriched Mueller-Hinton-Agar for disc susceptibility testing. J Clin Microbiol 22: 369–374

    PubMed  CAS  Google Scholar 

  42. Jones RN, Edson DC (1985) Antibiotic susceptibility testing accuracy. Arch Pathol Labor Med 109: 595–601

    CAS  Google Scholar 

  43. Kavanagh F (1963) Analytic Microbiology. Academic Press, New York

    Google Scholar 

  44. Kinsman OS, Naidoo J, Noble WC (1985) Some effects of plasmids coding for antibiotic resistance on the virulence of Staphylococcus aureus. Br J Exp Pathol 66: 325–332

    PubMed  CAS  Google Scholar 

  45. Klein P (1957) Bakteriologische Grundlagen der chemotherapeutischen Laboratoriumspraxis. Springer, Berl in Heidelberg

    Google Scholar 

  46. Klugman KP, Koornhof HJ (1988) Disk susceptibility testing of penicillin-resistant pneumococci. J Clin Microbiol 26: 610–611

    PubMed  CAS  Google Scholar 

  47. Knothe H, Dette GA (1985) Antibiotics in pregnancy: toxicity and teratogenicity. Infection 13: 49–51

    Article  PubMed  CAS  Google Scholar 

  48. Knothe H (1981) Aktuelle Chemotherapie: Antibiotika gegen Enterobacter. Umweltmedizin 4: 16

    Google Scholar 

  49. Knothe H (1982) Aktuelle Chemotherapie: Pneumokokken-wirksame Antibiotika. Umweltmedizin 5: 21

    Google Scholar 

  50. Knothe H (1982) Aktuelle Chemotherapie: Staphylokokken-wirksame Antibiotika. Umweltmedizin 5: 61–62

    Google Scholar 

  51. Knothe H (1982) Chemotherapie aktuell: Klebsiellen-wirksame Antibiotika. Umweltmedizin 5: 42

    Google Scholar 

  52. Knothe H (1982) Chemotherapie aktuell: Proteus-wirksame Antibiotika (Proteus mirabilis). Umweltmedizin 5: 82

    Google Scholar 

  53. Knothe H (1979) Wirkungsspektrum von Cefaclor. Diagn Intensivther 4: 1–8

    Google Scholar 

  54. Kobayashi GS, Medoff G (1983) Measurements of activity of antifungal drugs. In: Howard D (ed) Fungi pathogenic for humans and animals, Part B. Pathogenicity and Detection 1. Dekker, New York

    Google Scholar 

  55. Krasemann C (1981) Mikrobiologische Untersuchungen zu aktuellen Problemen der Chemotherapie. Thiemig, München

    Google Scholar 

  56. Kurzynski TA, Yrios JW, Helstad AG, Field CR (1976) Anaerobically incubated thioglycolate broth disc method for antibiotic susceptibility testing of anaerobes. Antimicrob Agents Chemother 10: 727–732

    PubMed  CAS  Google Scholar 

  57. Ladey BW (1984) Antibiotic resistance in Staphylococcus aureus and streptococci. Br Med Bull 40: 77–83

    Google Scholar 

  58. Latham RH, Zeleznik D, Minshew BH, Schoenknecht FD, Stamm WE (1984) Staphylococcus saprophyticus β-lactamase production and disc diffusion susceptibility testing for three β-lactam antimicrobial agents. Antimicrob Agents Chemother 26: 670–672

    PubMed  CAS  Google Scholar 

  59. Link D (1983) Untersuchungen zur Aktivität von Penicillinase-positiven und Penicilli- βnase-negativen Staphylococcus aureus-Stämmen gegenüber Penicillin-Antibiotika. Dissertation Universität Frankfurt, Frankfurt

    Google Scholar 

  60. Machka K, Balg H, Smith M, Braveny I (1978) Resistenzbestimmung von Haemophilus influenzae gegen Cotrimoxazol. Immun Infekt 6: 249–252

    PubMed  CAS  Google Scholar 

  61. Machka K, Braveny I, Dabernet H, Dornbusch K, van Dyck E, Kayser FH, van Klingeren B, Mittermayer H, Perca E, Powell M (1988) Distribution and resistance patterns of Haemophilus influenzae: a European cooperative study. Eur Clin Microbiol Infect Dis 7: 14–24

    Article  CAS  Google Scholar 

  62. Marre R (1983) Mechanismen der beta-Laktam-Resistenz von Escherichia coli und Proteus mirabilis. 39. Tagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie, Bonn

    Google Scholar 

  63. McGinnis MR, Rinaldi MG (1986) Antifungal drugs: mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids. In: Lorian V (ed) Antibiotics in Laboratory Medicine 2nd ed. Williams and Wilkins, Baltimore, London, Los Angeles, Sidney

    Google Scholar 

  64. Murray P, Granich GG, Krogstadt DJ, Niles AC (1983) In vivo selection of resistance to multiple cefalosporins by Enterobacter cloacae. J Infect Dis 147: 590

    Article  PubMed  CAS  Google Scholar 

  65. Murray PR, Zeitinger JR (1983) Evaluation of Mueller-Hinton-agar for disc diffusion susceptibility tests. J Clin Microbiol 18: 1269–1271

    PubMed  CAS  Google Scholar 

  66. Neu HC (1982) Factors that affect the in-vitro activity of cephalosporin antibiotics. J Antimicrob Chemother 10: 11–23

    Article  PubMed  CAS  Google Scholar 

  67. Nikaido H (1984) Outer membrane permeability and β-lactam resistance. In: Leive L, Schlesinger D (eds) Microbiology 1984. American Society for Microbiology, Washington

    Google Scholar 

  68. Pruul H, McDonald PJ (1988) Damage to bacteria by antibiotics in vitro and its relevance to antimicrobial chemotherapy: a historical perspective. J Antimicrob Chemother 21: 695–700

    Article  PubMed  CAS  Google Scholar 

  69. Radetstky M, Wheeler RC, Roe MH, Todd JK (1986) Microtiter broth dilution method for yeast susceptibility testing with validation by clinical outcome. J Clin Microbiol 24: 600–606

    Google Scholar 

  70. Ringertz S, Kronvall G (1988) On the theory of the disk diffusion test. APMIS 96: 484–490

    Article  PubMed  CAS  Google Scholar 

  71. Rosen IG, Jacobsen J, Rudderman R (1972) Rapid capillary tube method for detecting penicillin resistance in Staphylococcus aureus. Appl Microbiol 23: 649

    PubMed  CAS  Google Scholar 

  72. Rosenblatt JE (1985) Anaerobic bacteria in laboratory procedures in clinical microbiology. In: Washington JA (ed) Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  73. Rosenblatt JE (1986) Antimicrobial susceptibility testing of anaerobes in antibiotics in laboratory medicine. In: Lorian V (ed) 2nd ed. Williams & Wilkins, Baltimore London Los Angeles Sidney

    Google Scholar 

  74. Ryan R, Tilton RC (1977) Rapid method for determining the minimum inhibitory concentration of ampicillin for Haemophilus influenzae. Antimicrob Agents Chemother 11: 114–117

    PubMed  CAS  Google Scholar 

  75. Sahm DF, Baker CN, Jones RN, Thornsberry C (1983) Medium-dependent zone size discrepancies associated with susceptibility testing of group D-streptococci against various cephalosporins. J Clin Microbiol 18: 858–865

    PubMed  CAS  Google Scholar 

  76. Seeliger HPR (1978) Pilze — Pilzerkrankungen (Mykosen). In: Otte HI, Brandis H (Hrsg) Lehrbuch der Medizinischen Mikrobiologie. 4. Aufl. Fischer, Stuttgart

    Google Scholar 

  77. Shah PM, Ottrad M, Stille W (1983) Antibakterielle Aktivität von Norfloxacin im Urin verglichen mit der von Cinoxacin, Nalidixinsäure und Pipemidsäure. Eur J Clin Microbiol 2: 273–275

    Article  Google Scholar 

  78. Shanholtzer CJ, Peterson LR, Mohn ML, Moody JA, Gerding DN (1984) MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother 26: 214–219

    PubMed  CAS  Google Scholar 

  79. Smith JT (1984) Chemistry and mode of action of 4-quinolone agents. Fortschritte der antimikrobiellen und antineoplastischen Chemotherapie. Band 3–5, S 493–508

    Google Scholar 

  80. Sorgaard P (1984) β-Lactamase production in Enterobacter cloacae and Citrobacter freundii. Acta Pathol Microbiol Scand [B] 92:319–324

    Google Scholar 

  81. Svenson JM, Hill BC, Thornsberry C (1988) Authors reply. J Clin Microbiol 26: 611

    Google Scholar 

  82. Thabaut A, Meyran M (1984) La détermination de la concentration minima bactericide influence de différents facteurs techniques. Pathol Biol (Paris) 32: 351–354

    CAS  Google Scholar 

  83. Thornsberry C (1985) Automated procedures for antimicrobial susceptibility tests. In: Lennette EH, Balows A, Hausler WJ, Shadomy HJ (eds) Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington

    Google Scholar 

  84. Thornsberry C, Gavan TL, Sherris JC, Balows A, Matsen J, Sabath LD, Schoenknecht F, Thrupp LD, Washington JA (1975) Laboratory evaluation of a rapid automated susceptibility testing system: report of a collaborative study. Antimicrob Agents Chemother 7: 466–480

    PubMed  CAS  Google Scholar 

  85. Tilton RC (1984) Antimicrobial susceptibility tests. In: Ristuccia AM, Cunha BA (eds) Antimicrobial Therapy. Raven Press, New York

    Google Scholar 

  86. Toala P, Schroeder SA, Daly AK, Finland M (1970) Candida at Boston City Hospital, clinical and epidemiological characteristics and susceptibility to eight antimicrobial agents. Arch Intern Med 126: 983–989

    Article  PubMed  CAS  Google Scholar 

  87. Tofte RW, Solliday J, Crossley KB (1984) Susceptibilities of enterococci to twelve antibiotics. Antimicrob Agents Chemother 25: 532–533

    PubMed  CAS  Google Scholar 

  88. Ullmann U (1977) Correlation of minimum inhibitory concentration and beta-lactamase activity. Infection 5: 261–262

    Article  PubMed  CAS  Google Scholar 

  89. von Graevenitz A, Heitz M, Lüthy R, Meyer J, Vischer W (1984) Standardisierte Blättchentests zur Resistenzprüfung von Bakterien. Schweiz Med Wochenschr 144: 1079–1086

    Google Scholar 

  90. Washington JA, Snyder RJ, Kohner PC, Wioltsie CG, Ilstrup DM, McCall JT (1978) Effect of cation content of agar on the activity of gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. J Infect Dis 137: 103

    Article  PubMed  CAS  Google Scholar 

  91. Washington JA, Sutter VL (1980) Dilution susceptibility test: agar and macro-broth dilution procedures. In: Lennette EH, Balows A, Hausler WJ, Truant JP (eds) Manual of Clinical Microbiology, 3rd ed. American Society for Microbiology, Washington

    Google Scholar 

  92. Werk R (1986) Neue Gesichtspunkte bei der bakteriologischen Diagnostik von Harnwegserkrankungen. In: Winz HR (Hrsg) Jahrbuch der Urologie 1986. Regensberg & Biermann, Münster

    Google Scholar 

  93. Werk R (1983) Untersuchungen zur Verwendbarkeit des Blättchenelutionstests in der Mykologie. 39. Tagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie, Bonn

    Google Scholar 

  94. Werk R, Haaβ R (1982) Der Antimykotikablättchenelutionstest: eine neue quantitative Möglichkeit der Antimykotikatestung von Sproβpilzen. Immun Infekt 10: 110–114

    PubMed  CAS  Google Scholar 

  95. Werk R, Knothe H (1984) Comparison of agar dilution test, broth dilution test, and broth elution test for assaying susceptibility of Candida spp. Curr Microbiol 10: 173–176

    Article  CAS  Google Scholar 

  96. Wiedemann B (1983) Sensibilitätsbestimmung von Bakterien. Biotest-Serum-Institut GmbH, Frankfurt

    Google Scholar 

  97. Wilkins TD, Thiel T (1973) Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria. Antimicrob Agents Chemother 3: 350

    PubMed  CAS  Google Scholar 

  98. Willgeroth F, Rummel W (1982) Medikamente in der Gravidität und Stillzeit. Fortschr Med 100: 1954–1958

    PubMed  CAS  Google Scholar 

  99. Woolfrey BF, Fox JM, Quall CO (1981) A comparison of minimum inhibitory concentration values determined by three antimicrobic dilution methods for Pseudomonas aeruginosa. Am Soc Clin Pathol 75: 39–44

    CAS  Google Scholar 

  100. Woolfrey BF, Fox JM, Quail CO (1981) An analysis of error rates for disc agar-diffusion testing of Pseudomonas aeruginosa versus aminoglycosides. Am Soc Clin Pathol 75: 559–564

    CAS  Google Scholar 

  101. Woolfrey BF, Ramadei WA, Quall CO (1978) Inability of the standardized disc agar-diffusion test to measure susceptibility of the fluorescent group of Pseudomonas to gentamicin. Am J Clin Pathol 70: 337–342

    PubMed  CAS  Google Scholar 

  102. Woolfrey BF, Ramadei WA, Quall CO (1979) Evaluation of the moving intermediate zone concept for determining susceptibility of Pseudomonas to gentamicin by the standardized disc agar-diffusion test. Am J Clin Pathol 72: 861–863

    PubMed  CAS  Google Scholar 

  103. Yoshimura F, Nikaido H (1985) Diffusion of /Mactam antibiotics through the porin channels of Escherichia coli K-12k. Antimicrob Agents Chemother 27: 84–92

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werk, R. (1990). In-vitro-Testung von Chemotherapeutika. In: Medizinische Bakteriologie und Infektiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75404-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75404-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52122-8

  • Online ISBN: 978-3-642-75404-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics