Mathematics and Statistics for Analyses in Epidemiology

  • B. Hau
  • J. Kranz
Part of the Ecological Studies book series (ECOLSTUD, volume 13)


Epidemiology deals with populations, namely host, pathogen and diseases, and effects upon them. These populations are characterized by a number of elements which are related and form a structure. They obey mathematical principles, and are best described and explained by mathematical models. Mathematical methods and models are tools for elucidating elements, structures, and effects of the three populations involved in epidemics.


Powdery Mildew Canonical Correlation Analysis Disease Progress Curve Bean Common Mosaic Virus Wetness Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlers D, Hindorf H (1987) Epidemiologische Untersuchungen über den Schaderreger Sclerotinia sclerotiorum an Winterraps im Hinblick auf eine Prognose. Nachrichtenbl Dtsch Pflanzenschutzdienstes (Braunschweig) 39:113–119Google Scholar
  2. Amanat P (1977) Modellversuche zur Ermittlung individueller und objektabhängiger Schätzfehler bei Pflanzenkrankheiten. PhD Thesis, Univ GießenGoogle Scholar
  3. Analytis S (1973) Methodik der Analyse von Epidemien dargestellt am Apfelschorf (Venturia inaequalis (Cooke) Aderh.). Parey, Berlin (Acta Phytomedica 1)Google Scholar
  4. Analytis S (1977) Über die Relation zwischen biologischer Entwicklung und Temperatur bei phytopathogenen Pilzen. Phytopathol Z 90:64–76Google Scholar
  5. Analytis S (1979a) Modeling of temperature-dependent processes in the life cycle of phytopathogenic fungi. Agric Res 3:5–30 (in Greek)Google Scholar
  6. Analytis S (1979b) Die Transformation von Befallswerten in der quantitativen Phytopathologie. II. Das Linearisieren von Befallskurven. Phytopathol Z 96:156–171Google Scholar
  7. Aust HJ, Brettschneider-Herrmann B (1982) Nutzen und Grenzen biologischer Forschung unter kontrollierten Umweltbedingungen mit besonderer Berücksichtigung phytopathologischer Fragestellungen. Angew Bot 56:201–217Google Scholar
  8. Aust HJ, Hoyningen-Huene v. J (1986) Microclimate in relation to epidemics of powdery mildew. Ann Rev Phytopathol 24:491–510Google Scholar
  9. Aust HJ, Kranz J (1988) Experiments and procedures in epidemiological field studies. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo, p 7Google Scholar
  10. Aust HJ, Hau B, Mogk M (1978) Wirkung von Temperatur und Konidiendichte auf die Variabilität der Inkubationszeit des Gerstenmehltaues. Z Pflanzenkr Pflanzenschutz 85:581–585Google Scholar
  11. Aust HJ, Hau B, Kranz J (1983) Epigram-a simulator of barley powdery mildew. Z Pflanzenkr Pflanzenschutz 90:244–250Google Scholar
  12. Barnett OW, Randless JW, Burrows PM (1987) Relationships among Australian and North American isolates of the bean yellow mosaic potyvirus subgroup. Phytopathology 77:791–799Google Scholar
  13. Barrett JA (1980) Pathogen evolution in multilines and variety mixtures. Z Pflanzenkr Pflanzenschutz 87:383–396Google Scholar
  14. Barrett JA (1983) Estimating relative fitness in plant parasites: some general problems. Phytopathology 73:510–512Google Scholar
  15. Bartlett JT, Bainbridge A (1978) Volumetric sampling of microorganisms in the atmosphere. In: Scott PR, Bainbridge A (eds) Plant disease epidemiology. Blackwell, Oxford, p 23Google Scholar
  16. Berger RD (1973) Helminthosporium turcium lesion numbers related to numbers of trapped spores and fungicide sprays. Phytopathology 63:930–933Google Scholar
  17. Berger RD (1980) Measuring disease intensity. In: Crop loss assessment. Univ Minnesota Misc Publ 7, pp 28–31Google Scholar
  18. Bowen KL, Teng PS, Roelfs AP (1984) Negative interplot interference in field experiments with leaf rust of wheat. Phytopathology 74:1157–1161Google Scholar
  19. Braun PW (1989) Untersuchungen zur Populationsdynamik fungizidresisteriter Stämme des Gerstenmehltaus und deren Modellierung. Wissenschaftlicher Fachverlag, GießenGoogle Scholar
  20. Bronson CR (1981) The influence of unnecessary virulence genes on the reproductive fitness of Erysiphe graminis f. sp. tritici. PhD Thesis, Michigan State Univ, East LansingGoogle Scholar
  21. Bronson CR, Ellingboe AH (1986) The influence of four unnecessary genes for virulence on the fitness of Erysiphe graminis f. sp. tritici. Phytopathology 76:154–158Google Scholar
  22. Bulger MA, Ellis MA, Madden LV (1987) Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77:1225–1230Google Scholar
  23. Campbell CL, Madden LV, Pennypacker SP (1980a) Structural characterization of bean root rot epidemics. Phytopathology 70:152–155Google Scholar
  24. Campbell CL, Pennypacker SP, Madden LV (1980b) Progression dynamics of hypocotyl rot of snapbean. Phytopathology 70:487–494Google Scholar
  25. Chin KM (1987) A simple model of selection for fungicide resistance in plant pathogen populations. Phytopathology 77:666–669Google Scholar
  26. Clifford HT, Williams WT (1976) Similarity measures. In: Williams WT (ed) Pattern analysis in agricultural science. CSIRO, Melbourne, p 37Google Scholar
  27. Cohen Y, Rotem J (1971) Field and growth chamber approach to epidemiology of Pseudoperonospora cubensis on cucumbers. Phytopathology 61:736–737Google Scholar
  28. Cousens R, Marshall C (1987) Dangers in testing statistical hypotheses. Ann Appl Biol 111:469–476Google Scholar
  29. Davis JM (1987) Modeling the long-range transport of plant pathogens in the atmosphere. Ann Rev Phytopathol 25:169–188Google Scholar
  30. Davis JM, Main CE (1986) Applying atmospheric trajectory analysis to problems in epidemiology. Plant Dis 70:490–497Google Scholar
  31. Delp CJ (1980) Coping with resistance to plant disease control agents. Plant Dis 64:652–657Google Scholar
  32. Dixon WJ (1985) BMDP Statistical Software. Univ of California Press, BerkeleyGoogle Scholar
  33. Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  34. Duve TW (1989) Die Bedeutung biotischer Begrenzungsfaktoren im Reisanbau am Beispiel des Reisbrenners in Südkorea. PhD Thesis, Univ GießenGoogle Scholar
  35. Eisensmith SP (1985) PloIT Graphics and Statistics. ICS, FrankfurtGoogle Scholar
  36. Elliott VJ (1988) Response models for conidiospore germination and germ tube elongation of Mycosphaerella fragariae as influenced by temperature and moisture. Phytopathology 78:645–650Google Scholar
  37. Fitt BDL (1983) Evaluation of samplers for splash-dispersed fungus spores. EPPO Bull 13:57–61Google Scholar
  38. Fleming RA, Person CO (1978) Disease control through use of multilines: a theoretical contribution. Phytopathology 68:1230–1233Google Scholar
  39. Fleming RA, Marsh LM, Tuckwell HC (1982) Effect of field geometry on the spread of crop disease. Prot Ecol 4:81–108Google Scholar
  40. Forbes GA, Jeger MJ (1987) Factors affecting the estimation of disease intensity in simulated plant structures. Z Pflanzenkr Pflanzenschutz 94:113–120Google Scholar
  41. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge Univ Press, Cambridge (Cambridge studies in ecology, vol 1)Google Scholar
  42. Gaunt RE (1987) Measurement of disease and pathogens. In: Teng PS (ed) Crop loss assessment and pest management. APS, St Paul, p 6Google Scholar
  43. Gilligan CA (1986) Use and misuse of the analysis of variance in plant pathology. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 5. Academic Press, London New York, pp 225–261Google Scholar
  44. Gittins R (1979) Ecological applications of canonical analysis. In: Orloci L, Rao CR, Stiteler WM (eds) Multivariate methods in ecological work. Int Co-operativePubl House, Fairland, p 309 (Statistical ecology, vol 7)Google Scholar
  45. Gower JC (1987) Introduction to ordination techniques. In: Legendre P, Legendre L (eds) Developments in numerical ecology. Springer, Berlin Heidelberg New York Tokyo, p 3 (NATO ASI Series, vol G14)Google Scholar
  46. Grant MW, Archer SA (1983) Calculation of selection coefficients against unncessary genes for virulence from field data. Phytopathology 73:547–551Google Scholar
  47. Gregory PH (1948) The multiple-infection transformation. Ann Appl Biol 35:412–417PubMedGoogle Scholar
  48. Gregory PH (1973) The microbiology of the atmosphere. 2nd edn. Hill, LondonGoogle Scholar
  49. Gregory PH, Monteith JL (eds) (1967) Airborne microbes. Cambridge Univ Press, CambridgeGoogle Scholar
  50. Griggs MM, Nance WL, Dinus RJ (1978) Analysis and comparison of fusiform rust disease progress curves for five slash pine families. Phytopathology 68:1631–1636Google Scholar
  51. Groth JV, Roelfs AP (1987) The concept and measurement of phenotypic diversity in Puccinia graminis on wheat. Phytopathology 77:1395–1399Google Scholar
  52. Grove GG, Madden LV, Ellis MA, Schmitthenner AF (1985) Influence of temperature and wetness duration on infection of immature strawberry fruit by Phytophthora cactorum. Phytopathology 75:165–169Google Scholar
  53. Gumpert FM, Geiger HH, Stähle U (1987) A mathematical model of the epidemics in homogeneous and heterogeneous host stands. Z Pflanzenkr Pflanzenschutz 94:206–215Google Scholar
  54. Hampton RO (1975) The nature of bean yield reduction by bean yellow and bean common mosaic viruses. Phytopathology 65:1342–1346Google Scholar
  55. Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  56. Hartung J, Elpelt B (1984) Multivariate Statistik: Lehr- und Handbuch der angewandten Statistik. Oldenbourg, MünchenGoogle Scholar
  57. Hau B (1985) Epidemiologische Simulatoren als Instrumente der Systemanalyse mit besonderer Berücksichtigung eines Modells des Gerstenmehltaus. Parey, Berlin (Acta Phytomedica, vol 9)Google Scholar
  58. Hau B (1988) Ein erweitertes analytisches Modell für Epidemien von Pflanzenkrankheiten. Habilitationsschrift, Univ GießenGoogle Scholar
  59. Hau B, Kranz J (1977) Ein Vergleich verschiedener Transformation von Befall skurven, Phytopathol Z 88:53–68Google Scholar
  60. Hau B, Stähle U (1984) Modellierung der Häufigkeiten von Erregerrassen mit unterschiedlicher Fitness in Generationsversuchen. Mitt Biol Bundesanst Land Forstwirtsch Berlin-Dahlem 223:77Google Scholar
  61. Hau B, Cupsa I, Kranz J (1981) A mathematical approach to potato late blight outbreak. Abst of Pap, 8th triennial conference of the European association for potato research, Munich, pp 93–94Google Scholar
  62. Hau B, Eisensmith SP, Kranz J (1985) Construction of temporal models: II. Simulation of aerial epidemics. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London New York, p 31 (Advances in plant pathology, vol 3)Google Scholar
  63. Hau B, Kranz J, König R (1989) Fehler beim Schätzen von Befallstärken bei Pflanzenkrankheiten. Z Pflanzenkr Pflanzenschutz 96:649–674Google Scholar
  64. Hindorf H (1973a) Colletotrichum-Population auf Coffea arabica L. in Kenia. I. Eine Methode zur systematischen Trennung von Pilzpopulationen. Phytopathol Z 77:97–116Google Scholar
  65. Hindorf H (1973b) Colletotrichum-Fopulation auf Coffea arabica L. in Kenia. II. Qualitative and quantitative Unterschiede in der Colletotrichum-Population. Phytopathol Z 77:216–234Google Scholar
  66. Jackson RD (1986) Remote sensing of biotic and abiotic plant stress. Ann Rev Phytopathol 24:265–287Google Scholar
  67. James WC, Shih CS, Callbeck LC, Hodgson WA (1973) Interplot interference in field experiments with late blight of potato (P. infestans). Phytopathology 63:1269–1275Google Scholar
  68. James WC, Shih CS, Hodgson WA, Callbeck LC (1976) Representational errors due to interplot interference in field experiments with late blight of potato. Phytopathology 66:695–700Google Scholar
  69. Jeffers JNR (1978) An introduction to systems analysis: with ecological applications. Arnold, LondonGoogle Scholar
  70. Jeger MJ (1980) Multivariate models of components of partial resistance. Prot Ecol 2:265–269Google Scholar
  71. Jeger MJ (1982) The relation between total, infectious and postinfectious diseased plant tissue. Phytopathology 72:1185–1189Google Scholar
  72. Jeger MJ (1984) Relating disease progress to cumulative numbers of trapped spores: apple powdery mildew and scab epidemics in sprayed and unsprayed orchard plots. Plant Pathol 33:517–523Google Scholar
  73. Jeger MJ, Griffiths E, Jones DG (1981) Disease progress of non-specialised fungal pathogens in intraspecific mixed stands of cereal cultivars. I. models. Ann Appl Biol 98:187–198Google Scholar
  74. Jeger MJ, Griffiths E, Jones DG (1982) Asymptotes of diseases caused by non-specialised fungal pathogens in intraspecific mixed stands of cereal cultivars. Ann Appl Biol 101:459–464Google Scholar
  75. Jenkyn JF, Bainbridge A, Dyke GV, Todd AD (1979) An investigation into inter-plot interactions, in experiments with mildew on barley, using balanced designs. Ann Appl Biol 92:11–28Google Scholar
  76. Johnson SB, Berger RD (1982) On the status of statistics in Phytopathology. Phytopathology 72:1014–1015Google Scholar
  77. Jöreskog KG, Sörbom D (1984) LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. 3rd edn. Univ UppsalaGoogle Scholar
  78. Jörg E (1987) Synökologische Untersuchungen über Wechselwirkungen im Agroökosystem Winterweizen. PhD Thesis, Univ GießenGoogle Scholar
  79. Josepovits G, Dobrovolszky A (1985) A novel mathematical approach to the prevention of fungicide resistance. Pestic Sci 16:17–22Google Scholar
  80. Kable PF, Jeffery H (1980) Selection for tolerance in organisms exposed to sprays of biocide mixtures: a theoretical model. Phytopathology 70:8–12Google Scholar
  81. Kampmeijer P, Zadoks JC (1977) EPIMUL, a simulator of foci and epidemics in mixtures of resistant and susceptible plants, mosaics and multilines. Pudoc, WageningenGoogle Scholar
  82. Kiyosawa S (1972) Theoretical comparison between mixture and rotation cultivations of diseaseresistant varieties. Ann Phytopathol Soc Jpn 38:52–59Google Scholar
  83. Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Ann Rev Phytopathol 20:93–117Google Scholar
  84. Kovacs M, Tüske M (1988) Characteristic properties of Botrytis cinerea isolates: their pathogenicity and response to fungicides. Z Pflanzenkr Pflanzenschutz 95:210–220Google Scholar
  85. Kranz J (1968) Eine Analyse von annuellen Epidemien pilzlicher Parasiten III. Über Korrelation zwischen quantitativen Merkmalen von Befallskurven and Ähnlichkeiten von Epidemien. Phytopathol Z 61:205–217Google Scholar
  86. Kranz J (1972) Einige Voraussetzungen für die Planung und Durchführung von Feldversuchen in der Epidemiologie. Z Pflanzenkr Pflanzenschutz 79:573–581Google Scholar
  87. Kranz J (1974) Comparison of epidemics. Ann Rev Phytopathol 12:355–374Google Scholar
  88. Kranz J (1987) Raten für die Dynamik von Subpopulationen bei Krankheitserregern. Z Pflanzenkr Pflanzenschutz 94:225–229Google Scholar
  89. Kranz J (1988) Measuring plant disease. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo, p 35Google Scholar
  90. Kranz J, Knapp R (1973) Qualitative und quantitative Unterschiede der Vergesellschaftung parasitischer Pilzarten in verschiedenen Vegetationseinheiten. Phytopathol Z 77:235–251Google Scholar
  91. Kranz J, Lörincz D (1970) Methoden zum automatischen Vergleich epidemischer Abläufe bei Pflanzenkrankheiten. Phytopathol Z 67:225–233Google Scholar
  92. Lachenbruch PA (1975) Discriminant analysis. Hafner, New YorkGoogle Scholar
  93. Lamont BB, Grant KJ (1979) A comparison of twenty-one measures of site dissimilarity. In: Orloci L, Rao CR, Stiteler WM (eds) Multivariate methods in ecological work. Int Co-operative Publ House, Fairland, p 101 (Statistical ecology, vol 7)Google Scholar
  94. Lebeda A (1982) Measurement of genetic diversity of virulence in populations of phytopathogenic fungi. Z Pflanzenkr Pflanzenschutz 89:88–95Google Scholar
  95. Lebeda A, Jendrulek T (1987a) Cluster analysis as a method for evaluation of genetic similarity in specific host-parasite interaction (Lactuca sativa-Bremia lactucae) Theor Appl Genet 75:194–199Google Scholar
  96. Lebeda A, Jendrulek T (1987b) Application of cluster analysis for establishment of genetic similarity in gene-for-gene host-parasite relationships. J Phytopathol 119:131–141Google Scholar
  97. Lebeda A, Jendrulek T (1988) Application of methods of multivariate analysis in comparative epidemiology and research into field resistance. Z Pflanzenkr Pflanzenschutz 95:495–505Google Scholar
  98. Leonard KJ (1969) Selection in heterogeneous populations of Puccinia graminis f. sp. avenae. Phytopathology 59:1851–1857Google Scholar
  99. Levy Y, Levy RS (1986) Control strategies using systemic fungicides for limiting disease development and resistance buildup: practical implications of a simulation model. Phytoparasitica 14:303–312Google Scholar
  100. Levy Y, Levi R, Cohen Y (1983) Buildup of a pathogen subpopulation resistant to a systemic fungicide under various control strategies: a flexible simulation model. Phytopathology 73:1475–1480Google Scholar
  101. Li CC (1975) Path analysis—a primer. Boxwood, Pacific GroveGoogle Scholar
  102. Madden LV (1983) Measuring and modeling crop losses at the field level. Phytopathology 73:1591–1596Google Scholar
  103. Madden L, Pennypacker SP (1979) Principal component analysis of tomato early blight epidemics. Phytopathol Z 95:364–369Google Scholar
  104. Madden LV, Knoke JK, Louie R (1982) Considerations for the use of multiple comparison procedures in phytopathological investigations. Phytopathology 72:1015–1017Google Scholar
  105. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London New YorkGoogle Scholar
  106. McCartney HA, Fitt BDL (1985) Construction of dispersal models. In: Gilligan CA (ed) Mathematical modelling of crop disease. Academic Press, London New York, p 107 (Advances in plant pathology, vol 3)Google Scholar
  107. Meah B (1982) Differential reproduction of barley powdery mildew grown in binary mixtures of isolates. Phytopathol Z 103:329–339Google Scholar
  108. Meah B, Hermansen JE, Jorgensen JH (1982) Interactions between powdery mildew isolates and compatible barley cultivars. Phytopathol Z 105:45–50Google Scholar
  109. Morrison DF (1976) Multivariate statistical methods. McGraw-Hill, New YorkGoogle Scholar
  110. Mundt CC, Leonard KJ (1986) Analysis of factors affecting disease increase and spread in mixtures of immune and susceptible plants in computer-simulated epidemics. Phytopathology 76:832–840Google Scholar
  111. Mundt CC, Leonard KJ, Thal WM, Fulton JH (1986) Computerized simulation of crown rust epidemics in mixtures of immune and susceptible oat plants with different genotype unit areas and spatial distributions of initial disease. Phytopathology 76:590–598Google Scholar
  112. Nagarajan S, Ajai (1988) Monitoring and mapping long-distance spread. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo, p 243Google Scholar
  113. Nie HH, Hull CH, Jenkins JG, Steinbrenner K, Brent DH (1980) SPSS, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  114. Noe JP, Barker KR (1985) Relation of within-field spatial variation of plant-parasitic nematode population densities and edaphic factors. Phytopathology 75:247–252Google Scholar
  115. Ogle H, Taylor NW, Brown JF (1973) A mathematical approach to the prediction of differences in the relative ability of races oîPuccinia graminis to survive when mixed. Aust J Biol Sci 26:1137–1143Google Scholar
  116. Orloci L (1979) Non-linear data structures and their description. In: Orloci L, Rao CR, Stiteler WM (eds) Multivariate methods in ecological work. Int Co-operativePubl House, Fairland, p 191 (Statistical ecology, vol 7)Google Scholar
  117. Østergård H (1983) Predicting development of epidemics on cultivar mixtures. Phytopathology 73:166–172Google Scholar
  118. Østergaard H (1987) Estimating relative fitness in asexually reproducing plant pathogen populations. Theor Appl Genet 74:87–94Google Scholar
  119. Palmer MA, Stewart EL, Wingfield MJ (1987) Variation among isolates of Sphaeropsis sapinea in the north central United States. Phytopathology 77:944–948Google Scholar
  120. Pataky JK, Headrick JM, Suparyono (1988) Classification of sweet corn hybrid reactions to common rust, northern leaf blight, Stewart’s wilt, and Goss’ wilt and associated yield reductions. Phytopathology 78:172–178Google Scholar
  121. Paysour RE, Fry WE (1983) Interplot interference: a model for planning field experiments with aerially disseminated pathogens. Phytopathology 73:1014–1020Google Scholar
  122. Pearl R, Reed LJ (1925) Skew-growth curves, Proc Nat Acad Sci Washington 11:16–22Google Scholar
  123. Pedgley DE (1982) Windborne pests and diseases. Meteorology of airborne organisms. Horwood, ChichesterGoogle Scholar
  124. Pielou EC (1969) An introduction to mathematical ecology. Wiley, New YorkGoogle Scholar
  125. Pinnschmidt H (1989) Freilanduntersuchungen zur Epidemiologie von Pyricularia oryzae Cav. an Trockenreis. PhD Thesis, Univ GießenGoogle Scholar
  126. Pinstrup-Andersen P, de Londoño N, Infante M (1976) A suggested procedure for estimating yield and production losses in crops. PANS 22:359–365Google Scholar
  127. Poon ES, Leu LS, Liu C, Cheng WT (1982) Pathogeographic studies of sugarcane downy mildew in TAIWAN I. Historical analysis, regional pathogeographic classification and some considerations of disease attributes of the epidemics. Ann Phytopathol Soc Jpn 48:153–161Google Scholar
  128. Priestley RH, Bayles RA, Ryall J (1984) Identification of specific resistances against Puccinia striiformis (yellow rust) in winter wheat varieties II. Use of cluster analysis. J Natn Inst Agric Bot 16:477–485Google Scholar
  129. Rangkuty E (1984) Einfluß einiger systemischer Fungizide auf die Alterszusammensetzung der Kolonien des Gerstenmehltaus. Z Pflanzenkr Pflanzenschutz 91:488–496Google Scholar
  130. Rapilly F (1977) Recherche des facteurs de résistance horizontale à la Septoriose du Blé (Septoria nodorum Berk.). Résultats obtenus par la simulation (1). Ann Phytopathol 9:1–19Google Scholar
  131. Reinsch B, Wetzel T, Freier B (1980) Der Einfluß eines kombinierten Schadauftretens der Getreideblattlaus (Macrosiphum avenae (Fabr.)) und des Rothalsigen Getreidehähnchens (Oulema melanopus (L.)) auf den Ertrag von Winterweizen und die Festlegung der Bekämpfungsrichtwerten. Nachrichten Dtsch Pflanzenschutzdienstes (DDR) 34:7–10Google Scholar
  132. Roelfs AP, Groth JV (1980) A comparison of virulence phenotypes in wheat stem rust populations reproducing sexually and asexually. Phytopathology 70:855–862Google Scholar
  133. Ross IMM, Hattingh MJ (1987) Pathogenicity and numerical analysis of phenotypic features of Pseudomonas syringae strains isolated from deciduous fruit trees. Phytopathology 77:900–908Google Scholar
  134. Rotem J (1988) Techniques of controlled-condition experiments. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo, p 19Google Scholar
  135. SAS Institute Inc (1982) SAS User’s Guide: Statistics. SAS Inst Inc, CaryGoogle Scholar
  136. Schrödter H (1965) Methodisches zur Bearbeitung phytometeoropathologischer Untersuchungen, dargestellt am Beispiel der Temperaturrelation. Phytopathol Z 53:154–166Google Scholar
  137. Schuh W, Jeger MJ, Frederiksen RA (1987) The influence of soil environment on the incidence of sorghum downy mildew: a principal component analysis. Phytopathology 77:128–131Google Scholar
  138. Seal HL (1964) Multivariate statistical analysis for biologists. Methuen, LondonGoogle Scholar
  139. Seem RC (1984) Disease incidence and severity relationships. Ann Rev Phytopathol 22:133–150Google Scholar
  140. Seem RC (1988) The measurement and analysis of the effects of crop development on epidemics. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo, p 51Google Scholar
  141. Shaw MW (1989) A model of the evolution of polygenically controlled fungicide resistance. Plant Pathol 38:44–55Google Scholar
  142. Sherwood RT, Berg CC, Hoover MR, Zeiders KE (1983) Illusions in visual assessment of Stagnospora leaf spot of orchard grass. Phytopathology 73:173–177Google Scholar
  143. Snedecor GW, Cochran WG (1967) Statistical methods. 6th edn. Iowa State Uni Press, AmesGoogle Scholar
  144. Skylakakis G (1981) Effects of alternating and mixing pesticides on the buildup of fungal resistance. Phytopathology 71:1119–1121Google Scholar
  145. Sokal RR, Rohlf FJ (1981) Biometry—The principles and practice of statistics in biological research. 2nd edn. Freeman, New YorkGoogle Scholar
  146. Stiteler WM (1979) Multivariate statistics with application in statistical ecology. In: Orloci L, Rao CR, Stiteler WM (eds) Multivariate methods in ecological work. Int Co-operative Publ House, Fairland, p 279 (Statistical ecology, vol 7)Google Scholar
  147. Stynes BA (1980) Synoptic methodologies for crop loss assessment. In: Crop loss assessment. Univ Minnesota Misc Publ 7, pp 166–175Google Scholar
  148. Stynes BA, Veitch LG (1981) A synoptic approach for crop loss assessment used to study wheat. IV The description of cultural practices and the combination of cultural data and soil data. Aust J Agric Res 32:1–8Google Scholar
  149. Stynes BA, Veitch LG (1983) A synoptic approach for crop loss assessment used to study wheat. VI The pathogen data and their relationship to soil and cultural practise data. Aust J Agric Res 34:167–181Google Scholar
  150. Stynes BA, Wallace HR, Veitch LG (1979) A synoptic approach for crop loss assessment used to study wheat. I An appraisal of the physical and chemical soil properties in the study area. Aust J Soil Res 17:217–225Google Scholar
  151. Stynes BA, Veitch LG, Wallace HR (1981) A synoptic approach for crop loss assessment used to study wheat. V Crop growth and yield. Aust J Agric Res 32:9–19Google Scholar
  152. Teng PS, Close RC, Blackie MJ (1979) Comparison of models for estimating yield loss caused by leaf rust (Puccinia hordei) on Zephir barley in New Zealand, Phytopathology 69:1239–1244Google Scholar
  153. Thompson JP, Rees RG (1979) Pattern analysis in epidemiological evaluation of cultivar resistance. Phytopathology 69:545–549Google Scholar
  154. Van Bruggen AHC, Arneson PA (1986) Path coefficient analysis of effects of Rhizoctonia solani on growth and development of dry beans. Phytopathology 76:874–878Google Scholar
  155. Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, London New YorkGoogle Scholar
  156. Waggoner PE, Rich S (1981) Lesion distribution, multiple infection, and the logistic increase of plant disease. Proc Natl Acad Sci USA 78:3292–3295PubMedGoogle Scholar
  157. Welz G (1988) Virulenzdynamik einer Population von Erysiphe graminis f. sp. hordei auf anfälligen Gerstensorten. Z Pflanzenkr Pflanzenschutz 95:124–137Google Scholar
  158. Welz G, Kranz J (1987) Effects of recombination of races of a barley powdery mildew population. Plant Pathol 36:107–113Google Scholar
  159. Williams WT (1976a) Ordination: Principal component analysis. In: Williams WT (ed) Pattern analysis in agricultural science. CSIRO, Melbourne, pp 47–58Google Scholar
  160. Williams WT (1976b) Other ordination procedures. In: Williams WT (ed) Pattern analysis in agricultural science. CSIRO, Melbourne, pp 59–69Google Scholar
  161. Wingert F (1971) Eine Verallgemeinerung der logistischen Wachstumsfunktion. Biometr Z 13:34–78Google Scholar
  162. Wishart D (1975) CLUSTAN, User Manual, LondonGoogle Scholar
  163. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • B. Hau
  • J. Kranz
    • 1
  1. 1.Phytopathologie des WZ Tropeninstitut der Justus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations