Skip to main content

Photon Transport in Leaf Tissue: Applications in Plant Physiology

  • Chapter
Photon-Vegetation Interactions

Abstract

A quantitative treatment of photon flux interactions with plant tissue is necessitated by photobiology. As will be shown in Sect. 2 of this chapter, different methods developed to study the great variety of light-induced processes in plants, first of all in vitro spectroscopy and action spectroscopy, require quantitative descriptions of light distributions within leaves or probes of plant tissue. Problems of leaf optics are strongly modified by their photobiological origin as well as by specific features of plant tissue. This is demonstrated in Sect. 3. The estimation of optical properties amounts to a central task. Sect. 4 contains solutions of this problem for different special situations and also a theory which accounts for distortions of absorption spectra caused by spatial heterogeneity of absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

T:

time

ε, ελ :

specific absorption coefficient, also molar absorption cross-section [m2mol-1]

λ:

wavelength [nm = 10-9 m]

θλ :

quantum yield of phototransformation [mol(pigm)·mol-1 (photons)]

Īλ :

photons fluence rate [mol(phot) m-2 s-1]

V:

rate of phototransformation

KÌ„:

rate constant of phototransformation

σλ :

effective cross-section of phototransformation

PÌ„:

pigments concentration (in the ground state)

RÌ„:

physiological response

η(λ) :

fluorescence emission spectrum

I(r, Ω̱):

specific intensity (radiance) at the location r in the direction Ω̱(Wm-2sterad-2]

l:

pathlength [m]

σt, σa, σs :

total (extinction), absorption and scattering cross-sections of plant material respectively [m-1]

ξ, η, ζ:

cartesian coordinates

φ, θ:

azimuthal and polar angle respectively

Ω:

solid angle

Q(r, Ω̱); Qi(r, Ω̱):

source function and equivalent source function respectively

F, G:

flux density [Wm-2]

n:

refractive index

rcr,rcd :

reflectivity of a plane boundary for a collimated light incident from optically rarer and denser medium respectively

rr, rd :

reflectivity of a plane boundary for a Lambertian diffuse light incident from optically rarer and denser medium respectively

d:

fraction of a collimated incident flux transformed into diffuse flux upon crossing a boundary

T, R:

transmission and remission coefficients respectively

k, s:

phenomenological coefficients of absorption and scattering respectively

f:

phenomenological ratio of forward to overall scattering (anisotropy of scattering)

L:

thickness of a sample

σext, σa, σs :

extinction (total), absorption and scattering cross-sections of a particle respectively

σg, ωp :

geometrical cross-section and spherical albedo of a particle

Kext, Ka, Ks :

extinction, absorption and scattering efficiency coefficients of a particle respectively

Ï„p :

transmission efficiency of a particle

Np, Nc, Npc :

number densities of particles in a sample, of clusters in a sample and of particles in a cluster respectively

σc :

geometrical cross-section of a cluster

References

  • Amesz J, Duysens LNM, Brandt DC (1961) Methods for measuring and correcting the absorption spectrum of scattering suspensions. J Theor Biol 1:59–68

    Article  PubMed  CAS  Google Scholar 

  • Born GVR, Hume M (1967) Effects of numbers and sizes of platelet aggregates on the optical density of plasma. Nature (Lond) 215:1027–1029

    Article  CAS  Google Scholar 

  • Brewster L, Thien W (1982) Radiative transfer in packed fluidized beds: dependent versus independent scattering. J Heat Transfer 104:573–579

    Article  CAS  Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Dover, Oxford

    Google Scholar 

  • Duntley SQ (1942) The optical properties of diffusing materials. JOSA 32:61–70

    Article  Google Scholar 

  • Duyckaerts G (1959) The infrared analysis of solid substances. Analyst 84:201–214

    Article  CAS  Google Scholar 

  • Duysens LNM (1956) The flattening of the absorption spectrum of suspensions as compared to that of solutions. Biochim Biophys Acta 19:1–12

    Article  PubMed  CAS  Google Scholar 

  • Felder B (1964) Ãœber die Teilchengrösenabhängigkeit der Lichtabsorption in heterogenen Systemen. Helv Chem Acta 47: 488–497

    Article  CAS  Google Scholar 

  • Feller W (1966) An introduction to probability theory and its application. Wiley, New York

    Google Scholar 

  • Foerster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–172

    Article  Google Scholar 

  • Fukshansky L (1981) Optical properties of plant tissue. In: Smith H (ed) Plants and the daylights spectrum. Acad Press, Lond New York, pp 21–40

    Google Scholar 

  • Fukshansky L (1987) Absorption statistics in tuibid media. J Quant Spectrosc Radiat Transfer 38:389–406

    Article  CAS  Google Scholar 

  • Fukshansky L, Kazarinova N (1980) Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to fluorescent media JOSA 70:1101–1111

    CAS  Google Scholar 

  • Fukshansky-Kazarinova N, Lork W, Schäfer E, Fukshansky L (1986) Photon flux gradients in layered turbid media: Application to biological tissues. Appl Opt 25:780–788

    Article  PubMed  CAS  Google Scholar 

  • Giovanelly RG, (1955) Reflection by semi-infinite diffusors. Opt Acta 2: 153–162

    Article  Google Scholar 

  • Gledhill RJ, Julian DB (1963) Light absorption in heterogeneous systems with application to photographic dye images. JOSA 53:239–246

    Article  Google Scholar 

  • Gomer CJ (guest ed) (1987) Photodynamic therapy. Photochem Photobiol Spec Issue 46.

    Google Scholar 

  • Gordon DJ, Holzwarth G (1971) Artifacts in the measured optical activity of membrane suspensions. Arch Biochem Biophys 142:481–488

    Article  PubMed  CAS  Google Scholar 

  • Haupt W (1983) Photoperception and photomovement. In: Wareing PF, Smith H (eds) Photoperception by plants. Proc R Soc, University Press, Cambridge pp 467–478

    Google Scholar 

  • Irvine WM (1964) The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull Astron Inst Neth 17:266

    Google Scholar 

  • Ishimaru A (1978) Wave propagation and scattering in random media. Academic Press, Lond, New York

    Google Scholar 

  • Jahnke E, Emde F, Lösch F (1960) Tafeln höherer Funktionen. Teubner, Stuttgart

    Google Scholar 

  • Judd DB (1942) Fresnel reflection of diffusely incident light. J Res Nat Bur Stand 29:329–332

    Google Scholar 

  • Kaufmann WF, Hartmann KM (1988) Internal brightness of disk-shaped samples. J Photochem Photobiol 1:337–360

    Article  Google Scholar 

  • Kazarinova-Fukshansky N, Seyfried M, Schaefer E (1985) Distortion of action spectra in photomorphogenesis by light gradients within the plant tissue. Photochem Photobiol 41:689–702

    Article  Google Scholar 

  • Kortüm G (1969) Reflectance spectroscopy, principles, methods, applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kubelka P (1948) New contributions to the optics of intensely light scattering materials. Part IJOSA 38:448–456

    CAS  Google Scholar 

  • Kubelka P (1954) New contributions to the optics of intensely light scattering materials. Part II JOSA 44:330–335

    Article  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 11a:593–601

    Google Scholar 

  • Maheu B, Letoulouzan JN, Gouesbet G (1984) Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Appl Opt 23:3353–3362

    Article  PubMed  CAS  Google Scholar 

  • Martinez von Remisowsky A, McClendon J, Fukshansky L (1990) Estimation of light gradients in a living tissue by solving the inverse problem of the multi-stream radiative transfer. (in prep)

    Google Scholar 

  • McClendon J, Fukshansky L (1990) On the interpretation of absorption spectra of leaves. I. Introduction and correction of leaf spectra for surface reflection. Photochem Photobiol 52:203–210

    Article  Google Scholar 

  • Meador WE, Weaver WR (1979) Diffusion approximation for large absorption in radiative transfer. Appl Opt 18:1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Moon P (1940) A table of Fresnel reflection J Math Phys 19:1–11

    Google Scholar 

  • Mudgett PS, Richards LW (1971) Multiple scattering calculations for technology. Appl Opt 10:1485–1502

    Article  PubMed  CAS  Google Scholar 

  • Patau K (1952) Absorption microphotometry of irregular-shaped objects. Chromosoma 5:341–362

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Colbert JT, Herschey HP, Vierstra RD (1983) Phytochrome: molecular properties and biogenesis. In: Wareing PF, Smith H (eds) Photoperception by plants. Proc Soc, Univ Press, Cambridge, pp 387–402

    Google Scholar 

  • Rabinowitch E (1951) Photosynthesis and related processes, Vol II, Part 1. Wiley-Intersci, New York

    Google Scholar 

  • Ryde JW (1931) The scattering of light by Turbid Media. Part I. Proc R Soc A 131:451–463

    Article  Google Scholar 

  • Ryde J W, Cooper BS (1931) The scattering of light by turbid media. Proc R Soc A 131:464–474

    Article  Google Scholar 

  • Schäfer E, Fukshansky L, Shropshire W Jr (1983) Action spectroscopy of photoreversible pigment systems. In: Sharpshire W Jr, Mohr H (eds) Photomorphogeuesis. Springer, Berlin Heidelberg New York, 16 (4): 39–68

    Google Scholar 

  • Schuster A (1905) Radiation through a foggy atmosphere. Astrophys J 21:1. Reprinted in Meinzel DH (1966) Selected Pap Transfer Radiat, Dover New York

    Article  Google Scholar 

  • Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Opt 22:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Seyfried M, Fukshansky L, Schäfer E (1983) Correcting remission and transmission spectra of plant tissue measured in glass cuvettes: a technique. Appl Opt 22:492–496

    Article  PubMed  CAS  Google Scholar 

  • Silberstein L (1927) The transparency of turbid media. Phil Mag 4:1291–1302

    CAS  Google Scholar 

  • Skocypec RD Buckius RO (1982) Photon path length distributions for an isotropically scattering planar medium J Quant Spectrosc Radiat Transfer 28:425–439

    CAS  Google Scholar 

  • Spruit JP, Spruit HC (1972) Difference spectrum distortion in no-homogeneous pigment associations: abnormal phytochrome spectra in vivo. Biochim Biophys Acta 275:401

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt AR, Popescu T, Fukshansky L (1989) Is the dichroic photoreceptor for Phycomyces phototropism located at the plasma membrane or at the tonoplast? Photochem Photobiol 49:79–87

    Article  Google Scholar 

  • Terashima I, Inoue, Y (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L: Functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol 25:555–563

    CAS  Google Scholar 

  • Twersky V (1964) Proc Am Math Soc Symp Stochast Proc Math Phys Enz 16:84

    Google Scholar 

  • Twersky V (1970) Absorption and multiple scattering by biological suspensions JOSA 60: 1084–1093

    CAS  Google Scholar 

  • van de Hulst HC (1980) Multiple light scattering, Vol 2 Chap 17. Academic Press, Lond, New York

    Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  • van der Veen R, Meijer G (1958) Licht und Pflanzen. Phillips Tech Bibl, Eindhoven

    Google Scholar 

  • Völtz HG (1964) Ein Beitrag zur phänomenologischen Theorie lichtstreuender und absorbierender Medien. In: Proc 7th FATIPEC Congr, pp 194–201, Verlag Chemie, Weinheim/Bergstrasse

    Google Scholar 

  • Vogelmann TC, Björn LO (1984) Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe. Physiol Plant 60:361–368

    Article  Google Scholar 

  • Walsh WT (1926) The reflection factor of a polished glass surface for diffused light. Dept Sci Ind Res, Illumination Res Tech Pap 2:10–16

    Google Scholar 

  • Wiscombe WF (1980) Improved Mie scattering algorithms. Appl Opt 19:1505–1509

    Article  PubMed  CAS  Google Scholar 

  • Withrow RB (ed) (1959) Photoperiodism and related phenomena in plants and animals. Am Assoc Adv Sci, Washington DC

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukshansky, L. (1991). Photon Transport in Leaf Tissue: Applications in Plant Physiology. In: Myneni, R.B., Ross, J. (eds) Photon-Vegetation Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75389-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75389-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75391-6

  • Online ISBN: 978-3-642-75389-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics