Skip to main content

Applications of Radiative Transfer Models for Remote Sensing of Vegetation Conditions and States

  • Chapter
Photon-Vegetation Interactions

Abstract

The previous chapters of this book described in detail several different mathematical models for describing the interactions of electromagnetic energy in the visible and near infrared regions of the spectrum with vegetation canopies. In these models a common set of equations known as radiative transfer equations were solved based on different analytical, numerical and/or stochastic methods to yield realistic solutions that describe properly the processes of absorption, reflectance, transmittance, and hence scattering of energy by vegetation elements (i.e., leaves, stems, etc.), subject to a set of simplifying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andre JC, Goutorbe JP, Perrier A (1986) HAPEX-MOBILHY a hydrologic atmospheric pilot experiment for study of water budget and evaporation flux at the climatic scale. Bull Am Meteorol Soc 67:138–144

    Article  Google Scholar 

  • Asrar G, Hipps LE, Kanemasu ET (1984a) Assessing solar energy and water use efficiencies in winter wheat: A case study. Agric For Meterol 31:47–58

    Article  Google Scholar 

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984b) Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306

    Article  Google Scholar 

  • Asrar G, Kanemasu ET, Weiser RL, Martin RD, Miller GP (1985) Assessing grass canopy water status from multispectral remotely sensed data. Proc 17th Conf Agric For Meteorol, Scotsdale, Arizona, pp 23–24

    Google Scholar 

  • Asrar G, Myneni RB, Li Y, Kanemasu ET (1989) Measuring and modeling spectral characteristics of a tallgrass prairie. Remote Sens Environ 27:143–155

    Article  Google Scholar 

  • Benedict HM, Swidler R (1961) Nondestructive method for estimating chlorophyll content of leaves. Science 133:2015–2016

    Article  PubMed  CAS  Google Scholar 

  • Brakke TW, Smith JA (1987) A ray tracing model for leaf bidirectional scattering studies. Proc IGARSS’87 Symp, Ann Arbor, Michigan, USA, pp 643–648

    Google Scholar 

  • Bunnik NJJ (1978) The multispectral reflectance of shortwave by agricultural crops in relation with their morphological and optical properties. Pudoc Publ, Wageningen, The Netherlands, 175pp

    Google Scholar 

  • Caldwell MM, Harris GW, Dzurec RS (1983) A fiber optic point-quadrat system for improved accuracy in vegetation sampling. Oecologia 59:417–418

    Article  Google Scholar 

  • Campbell GS, Norman JM (1987) The description and measurement of plant canopy structure. In: Russell, Marshall, Jarvis PG (eds) Plant canopies, their growth, form and function. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Colwell RN (1956) Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 26:223–286

    Google Scholar 

  • Coulson KL, Reynolds DW (1971) The spectral reflectance of natural surfaces. J Appl Meteorol 10:1295

    Article  Google Scholar 

  • Dadykin VP, Bedenko VP (1961) The connection of the optical properties of plant leaves with soil moisture. Dokal Acad Sci USSR, Bot Sect V, 134:212–214

    Google Scholar 

  • Deering DW (1989) Field measurements of bidirectional reflectance. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley, New York, pp 14–65

    Google Scholar 

  • de Wit CT (1965) Photosynthesis of leaf canopies. Agric Res Rep 663, Pudoc, Wageningen, The Netherlands

    Google Scholar 

  • Diner DJ, Bruegge CJ, Martonchik JV et al. (1989) MISR: A multiangle imaging spectroradiometer for geophysical and climatological research from Eos. IEEE Trans Geosci Remote Sens GE-27:200–214

    Article  Google Scholar 

  • Duncan WG, Loomis RS, Williams WA, Hanu R (1967) A model for simulating photosynthesis in plant communities. Hilgardia 4:181–205

    Google Scholar 

  • Fuchs M, Asrar G, Kanemasu ET, Hipps LE (1984) Leaf are estimates from photosynthetically active radiation in wheat canopies. Agric For Meteorol 32:13–22

    Article  Google Scholar 

  • Fukshansky L (1981) Optical properties of plants. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, Lond New York pp 21–40

    Google Scholar 

  • Gallo KP, Daughtry CST, Bauer ME (1985) Spectral estimates of absorbed photosynthetically active radiation in corn canopies. Remote Sens Environ 17:221–232

    Article  Google Scholar 

  • Gausman HW (1982) Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sens Environ 13:233–238

    Article  Google Scholar 

  • Gausman HW (1985) Plant leaf optical properties in visible and near infrared light. Graduate Stud Rep 29, Texas A&M Univ, Texas Tech Press, Lubok, Texas, 78pp

    Google Scholar 

  • Gausman HW, Allen WA, Schupp ML, Wiegand GL, Escobar, DE, Rodriguez RR, (1970) Reflectance, transmittance, and absorptance of electromagnetic radiation of leaves of eleven plant genera with different mesophyll arrangements. Tech Monogr 7, Texas A&M Univ College Station, Texas, 38pp

    Google Scholar 

  • Gaussman HW, Allen WA, Escobar DE, Rodriguez RR, Richardson AJ (1973) The leaf mesophyll of twenty crops, their light spectra, and optical and geometrical parameters. USDA Tech Bull 1465, Weslaco, Texas, 59pp

    Google Scholar 

  • Gerstl SAW, Simmer C (1986) Radiation physics and modeling for off-nadir satellite-sensing of non-Lambertian surfaces. Remote Sens Environ 20:1–29

    Article  Google Scholar 

  • Goel NS (1988) Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens Rev 4:1–212

    Article  Google Scholar 

  • Goetz AFH, Herring M (1989) The high resolution imaging spectrometer (HIRIS) for Eos. IEEE Trans Geosci Remote Sens GE-27:136–144

    Article  Google Scholar 

  • Grant L (1987) Diffuse and specular characteristics of leaf reflectance. Remote Sens Environ 22:309–322

    Article  Google Scholar 

  • Greenburg DP (1989) Light reflection models for computer graphics. Science 244:166–173

    Article  Google Scholar 

  • Hecht E, Zajac A (1976) Polarizaton of optics. Addison-Wesley, Reading, Mass, pp 219–274

    Google Scholar 

  • Hipps LE, Asrar G, Kanemasu ET (1983) Assessing the interception of photosynthetically active radiation in winter wheat. Agric For Meteorol 28:253–259

    Article  Google Scholar 

  • Hoffer RM, Johannsen CJ (1969) Ecological potentials in spectral signature analysis. In: Johnson PO (ed) Remote sensing in ecology. Univ Georgia Press, Athenes, Georgia, pp 1–16

    Google Scholar 

  • Hunt GR (1980) Electromagnetic radiation: the communication link in remote sensing. In: Siegal BS, Gillespie AR (eds) remote sensing in geology Wiley New York, pp 5–45

    Google Scholar 

  • Irons JR, Johnson BL, Linebaugh GH (1987) Multiple angle observations of reflectance anisotropy from an airborne linear array sensor. IEEE Trans Geosci Remote Sens GE-25:372–383

    Article  Google Scholar 

  • Kaufman YJ (1989) The atmospheric effects on remote sensing and its correction. In: Asrar G (ed) Theory and applications of optical remote sensing Wiley New York, pp 336–428

    Google Scholar 

  • Kleshnin AF, Shul’gin IA (1959) The optical properties of plant leaves. Dokl Akad Nauk, SSSR, 125:1158.

    Google Scholar 

  • Kleshnin AF, Shul’gin IA (1959) The optical properties of plant leaves. Translated: AIB S Dokl, 125:108–110

    Google Scholar 

  • Knipling EB (1969) Leaf reflectance and image formation on color infrared film. In: Johnson PO (ed) Remote sensing in ecology. Univ Georgia Press, Athènes, Georgia, pp 17–29

    Google Scholar 

  • Kumar R, Silva L (1973) Light ray tracing through a leaf cross sections. Appl Optics 12:2950–2954

    Article  CAS  Google Scholar 

  • Kuusk A (1985) The hot spot effect of a uniform vegetation cover. Sov J Remote Sens 3:645–652 (Engl Transl)

    Google Scholar 

  • Kuusk A, Nilson T (1988) The reflectance of shortwave radiation from multiyear plant canopies. Preprint A-1, Acad Sci Estonia SSR, Tartu, 202444, Töravere, Estonia, USSR, 71pp

    Google Scholar 

  • Linz ZF, Ehleringer J (1966) Effects of leaf age on photosynthesis and water use efficiency of papaya. Photosynthetica 16:514–519

    Google Scholar 

  • Loomis RS, Williams WA, Duncan WG (1967) Community architecture and the productivity of terrestrial plant communities. In: Pietro AS, Green FA, Army TJ (eds) Harvesting the sun. Academic Press, Lond New York, pp 191–308

    Google Scholar 

  • Loomis RS, Williams WA, Duncan WG, Douart A (1968) Quantitative description of foliage display and light absorption of corn plants. Crop Sci 8:352–356

    Article  Google Scholar 

  • MacArthur RH, Horn HS (1969) Foliage profile by vertical measurements. Ecology 50:802–804

    Article  Google Scholar 

  • Moss RA, Loomis WE (1952) Absorption spectra of leaves: I. The visible spectrum. Plant Physiol 27:370–391

    Article  PubMed  CAS  Google Scholar 

  • Myneni RB, Asrar G, Kanemasu ET, Lawlor DJ, Impens I (1986a) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies: I. Theoretical considerations. Agric For Meteorol 37:189–204

    Article  Google Scholar 

  • Myneni RB, Asrar G, Wall GW Kanemasu ET Impens I (1986b) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies: II. Results and discussions. Agric For Meteorol 37:205–218

    Article  Google Scholar 

  • Myneni RB, Ross J, Asrar G (1989) A review on the theory of photon transport in leaf canopies. Agric For Meteorol 45:153

    Article  Google Scholar 

  • National Aeronautics and Space Administration (1989) Earth observing system: Reference Information. Reference Handbook, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 67pp

    Google Scholar 

  • National Aeronautics and Space Administration (1986) Earth System Science Overview. Mail Code SE, Washington DC 20546, USA

    Google Scholar 

  • Norman JM (1980) Interfacing leaf and canopy light interception models. In: Hesketh JD, Jones J W (eds) Predicting photosynthesis for ecosystem models, Vol II. CRC Press, Boca Racon, Florida, USA pp 49–67

    Google Scholar 

  • Norman JM, Jarvis PG (1975) Photosynthesis in Sitka spruce [Picea sithensis (Bong.) Carr.]. Part V. Radiation penetration theory and test case. J Appl Ecol 12:839–878

    Article  Google Scholar 

  • Pearman GI (1966) The reflection of visible light from leaves of some western Australian species. Aust J Biol Sci 19:97–103

    Google Scholar 

  • Peterson DL, Running SW (1989) Applications in forest science and management. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley, New York, pp 429–473

    Google Scholar 

  • Ross J (1967) The role of solar radiation in the photosynthesis of crops. In: Nichiprovich AA (ed) Photosynthesis of productive systems. Israel Prog Sci Transl Jerusalem, Israel, 44–52

    Google Scholar 

  • Saeki T (1960) Interrelationships between leaf amount, light distribution and total photosynthesis. Bot Mag 73:55–63

    Google Scholar 

  • Salomonson VS, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) Advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens GE-27:145–153

    Article  Google Scholar 

  • Sellers PJ (1989) Vegetation canopy spectral reflectance and biophysical processes. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley New York, pp 297–335

    Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Shul’gin IA, Khazanov VS, Kleshnin AF, (1960) On the reflection of light as related to leaf structure. Dokl Akad Nauk, SSSR 134:471–474 (Engl Transl)

    Google Scholar 

  • Sparrow EM, Cess RD (1980) Radiation heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Szeicz G. (1974) Solar radiation for plant growth. J Appl Ecol 11:617–636.

    Article  Google Scholar 

  • Thomas JR, Oerther GF (1972) Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron J 64:11–13

    Article  Google Scholar 

  • Vane G, Goetz AFH (1988) Terrestrial imaging spectroscopy. Remote Sens Environ 24:1–29

    Article  Google Scholar 

  • Warren-Wilson J (1959a) Analysis of the spatial distribution of foliage by means of two-dimensional point-quadrats. New Phytol 58:92–101

    Article  Google Scholar 

  • Warren-Wilson J (1959b) Analysis of the distribution of foliage area in grassland. In: Ivins JD (ed) The measurement of grassland productivity. Academic Press, Lond New York pp 51–61

    Google Scholar 

  • Wickland DE (1989) Future directions for remote sensing in terrestrial ecological research. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley, New York, pp 691–724

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asrar, G., Myneni, R.B. (1991). Applications of Radiative Transfer Models for Remote Sensing of Vegetation Conditions and States. In: Myneni, R.B., Ross, J. (eds) Photon-Vegetation Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75389-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75389-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75391-6

  • Online ISBN: 978-3-642-75389-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics